

cgatools Installation Guide

Version 1.0

Complete Genomics data is for Research Use Only and not for use in the treatment or diagnosis of any human subject. Information, descriptions and specifications in this publication are subject to change without notice.

Copyright © 2010 Complete Genomics Incorporated. All rights reserved.

Table Of Contents

Preface	.3
Conventions	. 3
Conventions cgatools Documents References	. 3
References	. 3
Overview and Requirements	5
Install Process in a Nutshell	. 5
User Requirements System Requirements	. 5
System Requirements	. 5
Software Requirements to Build cgatools from Source Code	. 6
Preparing the Environment	6
Installing cgatools from a Binary Distribution	
Installing CMake	
Installing Boost	
Installing cgatools from Source Code	.9
Building a Reference Human Genome for Use with cgatools	11

Preface

This document contains the installation instructions for cgatools from Complete Genomics, Inc (CGI).

Conventions

This document uses the following notational conventions:

Notation	Description
42\$ echo hello world	Indicates that the reader type "echo hello world" (without quotes) at the command prompt. The steps are numbered (bold number before the prompt) sequentially through the document.

cgatools Documents

This document is part of a set that describe aspects of **cgatools** and the Complete Genomics human genome data:

- *cgatools Methods* Describes the motivation and design decisions for **cgatools**, the open source project to provide tools for downstream analysis of Complete Genomics data.
- *Complete Genomics Data File Formats* Describes the organization and content of the format used to deliver Complete Genomics human genome data.
- Variation Data Frequently Asked Questions Provides detailed answers to questions about Complete Genomics variation and evidence files.
- *Getting Started Frequently Asked Questions* Describes how to prepare for receiving Complete Genomics data files.

For more information about **cgatools**, see the Complete Genomics website:

http://www.completegenomics.com/services/cgatools.aspx

References

cgatools requires users to be familiar with Unix-like commands. Here are some basic resources to get you started or enhance your skills:

- A Brief UNIX Shell Comparison: <u>http://www.thewellroundedgeek.com/2007/04/brief-unix-shell-comparison.html</u>
- An alphabetical list of basic Unix/Linux commands with thorough examples: <u>http://www.math.utah.edu/lab/unix/unix-commands.html</u>
- A complete list of Linux commands and their options: <u>http://www.oreillynet.com/linux/cmd/</u>

Installing **cgatools** requires users to have installed several Unix utilities. See the resources below for downloads and more information. This installation guide provides step-by-step instructions for using the utilities to install **cgatools**.

 CMake: An extensible, open-source system that manages the build process in an operating system and in a compiler-independent manner. Here's an overview of the utility and its operation: <u>http://www.cmake.org/Wiki/CMake</u>. Boost C++ libraries: This freely downloaded, peer-reviewed set of C++ libraries provides the core C++ functionality on which the cgatools source code is built. You will not need to interact with Boost other than to make sure it is installed and available during the cgatools installation process. Here's where to find out more: http://www.boost.org/users/faq.html.

For detailed documentation and installation instructions, see: <u>http://www.boost.org/doc/libs/1_42_0/more/getting_started/unix-variants.html</u>.

Python interpreter: This open source programming language gives users of CGI data a
powerful analysis platform. You won't need to interact with Python for this installation, but
you may find that you want to use it to expand your data analysis capabilities. Here's where
to get started with Python: http://docs.python.org/tutorial/.

Overview and Requirements

cgatools is an open source project to provide tools for downstream analysis of Complete Genomics data. **cgatools** is distributed as source files that can easily be compiled and run on a Linux or Unix desktop or server.

Before you install cgatools, make sure you have the following requirements:

Install Process in a Nutshell

You can install the **cgatools** software on 64-bit Linux systems from pre-compiled binary distributions provided by Complete Genomics. This document provides detailed instructions for these high-level steps:

- 1. <u>Prepare your environment</u>.
- 2. <u>Install **cgatools**</u> from the binary distribution.
- 3. <u>Create a copy of the reference human genome</u> formatted for use with cgatools.

Alternatively, you can build **cgatools** from source code. This document provides detailed instructions for these high-level steps:

- 1. <u>Prepare your environment</u>.
- 2. Verify that you have the <u>required third-party software</u>.
- 3. Build and install CMake.
- 4. <u>Build and install Boost</u>.
- 5. Use CMake to <u>build and install **cgatools**</u>.
- 6. <u>Create a copy of the reference human genome</u> formatted for use with **cgatools**.

User Requirements

• Command-line Unix skills

System Requirements

• CentOS 5.1 (64-bit) Linux or equivalent.

This package works on 32-bit or 64-bit Linux and Unix-like systems, including Mac OS X (via the terminal program). However, CGI has formally tested only the CentOS 64-bit environment. It has not been tested on Microsoft Windows.

- 2GB RAM available
- Disk usage proportional to the data.

Typically, you will need 30-50 GB disk space per genome when working with CGI variation and evidence data, reference data, and **cgatools** output from one or more tools. However, for the ST001RM product option (genomes with reads and initial mappings included), your CGI data may be 400 GB or more per genome. Depending on what you intend to do with the data, you will need even more disk space than this. For example, if you intend to convert the initial mapping data to SAM and BAM format, you need more than 2 TB of space, some of which is taken up by intermediate files (the SAM files) that can be deleted after the conversion.

Software Requirements to Build cgatools from Source Code

- GCC C++ compiler from the GNU Compiler Collection, version 4.1.2 or later (Linux)
- Xcode version 3.2 (Mac OS X only)
- CMake version 2.8.1 or later
- Boost version 1.42 recommended (later than 1.35 required)
- Python version 2.4.3 or later (only required if running test cases)
- Doxygen version 1.6.2 or later (only required if generating API docs)

Note: You may have older versions of some of these software programs installed, or they may be installed in a manner inconvenient for the **cgatools** build process. If you encounter error messages during the **cgatools** build process, we recommend you download and install fresh versions of CMake and Boost. Consider installing them in a private directory separate from the other version on your computer.

Preparing the Environment

1. Create a directory structure.

We recommend the following directory structure to support the installation, build, and use of **cgatools**. This structure assumes your username is "cgi" and all CGI data and applications are installed by user "cgi".

/home/cgi/src

Tar files and other intermediate files that are not needed after the **cgatools** installation is complete.

/home/cgi/local/bin

The location of the **cgatools** executable as well as commands used by **cgatools** build process, including CMake.

```
/home/cgi/local/bin/cgatools
```

The final directory for the **cgatools** executable.

/home/cgi/local/share/cgatools-1.0.0/doc

The final location of **cgatools** documentation.

/home/cgi/ref

Reference human genome sequence files.

/home/cgi/data

Your CGI human genome data files.

The installation instructions assume this directory structure. If you choose to create a variation on this structure, make sure to adapt the installation instructions below to your structure.

2. Be sure that the cgatools /bin directory (here, /home/cgi/local/bin) is in your \$PATH.

Consult your shell documentation for how to set the \$PATH in your .tcshrc or .bashrc file.

Installing cgatools from a Binary Distribution

cgatools is available as a pre-compiled binary distribution for 64-bit Linux:

1. Download the cgatools binary distribution into /home/cgi/src.

The cgatools binary distribution has a name such as cgatools-1.0.0.x-linux-x86_64.tar.gz and is available here:

http://sourceforge.net/projects/cgatools/files/

2. Change to the download directory.

B1\$ cd /home/cgi/src

3. Untar the tarball:

B2\$ tar xzf cgatools-1.0.0.x-linux-x86_64.tar.gz

This command creates the cgatools-1.0.0.x-linux-x86_64 directory including cgatools executable and documents:

- Executable: /bin/cgatools
- Documentation: /share/cgatools-0.0.0/doc/index.html
- 4. Copy the executable and documentation into your binary directory:

```
B3$ cp cgatools-1.0.0.x-linux-x86_64/bin/cgatools /home/cgi/bin
```

Alternatively, if you are installing **cgatools** into a system directory which requires sudo (that is, root privileges) you will need to type:

B3\$ sudo cp cgatools-1.0.0.x-linux-x86_64/bin/cgatools /usr/local/bin

5. Make sure the new commands are available to the shell.

```
For C-shell (csh, tcsh):
```

 ${\tt B4\$}$ rehash

For Bash or Bourne shell:

B4\$ hash -r

6. Test the install:

B5\$ cgatools

If **cgatools** returns with the version number (1.0.0.x) and a page of help notes, you have successfully installed **cgatools**.

At this point you can skip ahead to "Building a Reference Human Genome for Use with cgatools."

Installing CMake

If you already have a correct version of CMake installed on your system, make sure the command is in your \$PATH and skip to the next section "Installing Boost."

Note:

Precompiled binaries are available for CMake. If you choose to use a CMake binary as opposed to build from source, make sure its machine architecture is the same as used for Boost. For example, 64-bit CMake should only be used with 64-bit Boost.

To build and install CMake from source:

- 1. Open a Lunix/Unix command shell.
- 2. Download the CMake distribution into /home/cgi/src.

http://www.cmake.org/cmake/resources/software.html

3. Change to the download directory.

1\$ cd /home/cgi/src

4. Unpack the tarball:

2\$ tar -xvf cmake-2.8.1.tar.gz

This creates a cmake-2.8.1 subdirectory.

5. Change to the CMake directory.

3\$ cd cmake-2.8.1

6. Configure the software, specifying the final installation target:

```
4$ ./bootstrap --prefix=/home/cgi/local
```

Resolve any errors, such as not having GNU C Compiler Collection installed. See "<u>Software</u> <u>Requirements</u>."

7. Build the software.

5\$ gmake

This takes a few minutes. Resolve any errors.

8. Install the software.

6\$ make install

Alternatively, if you are installing CMake into a system directory which requires sudo (that is, root privileges) you will need to type:

6\$ sudo make install

9. Make sure the new commands are available to the shell.

For C-shell (csh, tcsh):

7\$ rehash

For Bash or Bourne shell:

7\$ hash -r

10. Test the installation.

8\$ cmake --help

If the cmake command prints the correct version number and a page of help notes, you have successfully installed CMake and your path variable is set correctly.

Installing Boost

To build and install Boost from source:

1. Download the Boost distribution into /home/cgi/src.

http://sourceforge.net/projects/boost/files/boost

- Change to the download directory.
 9\$ cd /home/cgi/src
- 3. Unpack the tarball:

10\$ tar -xvf boost_1_42_0.tgz

This will take several minutes. This creates a boost_1_42_0 subdirectory.

4. Change to the Boost directory:

11\$ cd boost_1_42_0

5. Configure the software, specifying the final installation target:

12\$./bootstrap.sh --prefix=/home/cgi/local

6. Now build the software:

13\$./bjam install

Alternatively, if you are installing CMake into a system directory which requires sudo (that is, root privileges) you will need to type:

13\$ sudo ./bjam install

This step will take a long time (perhaps an hour). You will see many libboost* files appear in /home/cgi/local/lib and many *.hpp files in /home/cgi/local/include.

It is not uncommon to see some errors in the Boost install.

Installing cgatools from Source Code

To build and install cgatools:

1. Download the cgatools distribution into /home/cgi/src.

The **cgatools** distribution has a name such as cgatools-1.0.0.x-source.tar.gz and is available here:

http://sourceforge.net/projects/cgatools/files/

2. Change to the download directory.

14\$ cd /home/cgi/src

3. Unpack the tarball:

15\$ tar -xvf cgatools-1.0.0.x-source.tar.gz

4. Change to the cgatools-1.0.0.x-source directory:

16\$ cd cgatools-1.0.0.x-source

Create an empty directory in which to build cgatools (build for example).
 17\$ mkdir build

6. Change to the build directory:

18\$ cd build

7. Configure cgatools.

You can type this next command on one line or use $\$ (backslash) to split it onto multiple lines, as shown here.

```
19$ cmake -DBOOST_ROOT=/home/cgi/local \
-DCMAKE_INSTALL_PREFIX=/home/cgi/local/ \
-DCMAKE_BUILD_TYPE=Release \
/home/cgi/src/cgatools-1.0.0.x-source
```

where the BOOST_ROOT flag points to the final installation target for Boost.

8. Compile cgatools.

20\$ make -j8

9. Tests cgatools.

This step uses Python to run the 75 cgatools test cases.

21\$ ctest -j8

If any of the tests fail, investigate the failure before proceeding to the next step.

10. Install cgatools.

22\$ make -j8 install

Alternatively, if you are installing **cgatools** into a system directory which requires sudo (that is, root privileges) you will need to type:

22\$ sudo make -j8 install

11. Make sure the new commands are available to the shell.

For C-shell (csh, tcsh):

23\$ rehash

For Bash or Bourne shell:

23\$ hash -r

12. Test the install:

24\$ cgatools

If **cgatools** returns with the version number (here 1.0.0) and a page of help notes, you have successfully installed **cgatools**.

If you are ultimately unable to install **cgatools** and are warned that there are problems with the Boost libraries, you may need to consult a system administrator for help.

13. Locate the documentation for **cgatools**:

```
/home/cgi/local/share/cgatools-1.0.0/doc/index.html
```

Building a Reference Human Genome for Use with cgatools

cgatools uses a compact representation of the human genome in a specialized crr (Compact Randomly accessible Reference) format that can be made from the hg18 FASTA reference sequences available from UCSC. Hg18 corresponds to NCBI build 36.

To build the reference human genome:

1. Download the unmasked FASTA files into /home/cgi/src:

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFa.zip

2. Change to the download directory.

25\$ cd /home/cgi/src

3. Make an hg18 sub-directory.

26\$ mkdir hg18

4. Change to the hg18 directory.

```
27$ cd hg18
```

5. Unpack the zip file.

28\$ unzip ../chromFa.zip

6. Review the files.

29\$ ls

You should see 49 files, including 25 chromosome files in FASTA format (chr*.fa).

7. Make a copy of the reference list of FASTA files.

cgatools provides a text file listing the subset of files in the required order. Make a copy here for convenience.

30\$ cp /home/cgi/local/share/cgatools-1.0.0/doc/chrom-list.txt .

8. Perform the format conversion making hg18.crr:

You can type this next command on one line or use $\$ (backslash) to split it onto multiple lines, as shown here.

31\$ cgatools fasta2crr --input `cat chrom-list.txt` \ --output hg18.crr

Note: Those are ` (backtick) characters in the command above. They are **NOT** ' (single quotes or apostrophe).

9. List the contents of hg18.crr.

```
32$ cgatools listcrr --reference hg18.crr
```

ChromosomeId	Chromosome	Length	Circular	Md5
0	chrl	247249719	false	9ebc6df9496613f373e73396d5b3b6b6
1	chr2	242951149	false	b12c7373e3882120332983be99aeb18d
2	chr3	199501827	false	0e48ed7f305877f66e6fd4addbae2b9a
3	chr4	191273063	false	cf37020337904229dca8401907b626c2
4	chr5	180857866	false	031c851664e31b2c17337fd6f9004858
5	chr6	170899992	false	bfe8005c536131276d448ead33f1b583
б	chr7	158821424	false	74239c5ceee3b28f0038123d958114cb
7	chr8	146274826	false	1eb00fe1ce26ce6701d2cd75c35b5ccb
8	chr9	140273252	false	ea244473e525dde0393d353ef94f974b
9	chr10	135374737	false	4ca41bf2d7d33578d2cd7ee9411e1533
10	chr11	134452384	false	425ba5eb6c95b60bafbf2874493a56c3
11	chr12	132349534	false	d17d70060c56b4578fa570117bf19716
12	chr13	114142980	false	c4f3084a20380a373bbbdb9ae30da587
13	chr14	106368585	false	c1ff5d44683831e9c7c1db23f93fbb45
14	chr15	100338915	false	5cd9622c459fe0a276b27f6ac06116d8
15	chr16	88827254	false	3e81884229e8dc6b7f258169ec8da246
16	chr17	78774742	false	2a5c95ed99c5298bb107f313c7044588
17	chr18	76117153	false	3d11df432bcdc1407835d5ef2ce62634
18	chr19	63811651	false	2f1a59077cfad51df907ac25723bff28
19	chr20	62435964	false	f126cdf8a6e0c7f379d618ff66beb2da
20	chr21	46944323	false	f1b74b7f9f4cdbaeb6832ee86cb426c6
21	chr22	49691432	false	2041e6a0c914b48dd537922cca63acb8
22	chrX	154913754	false	d7e626c80ad172a4d7c95aadb94d9040
23	chrY	57772954	false	62f69d0e82a12af74bad85e2e4a8bd91
24	chrM	16571	true	d2ed829b8a1628d16cbeee88e88e39eb

The output should be identical to the following list:

10. Copy the new reference to a more useful location:

```
33$ mkdir /home/cgi/ref
34$ mv hg18.crr /home/cgi/ref
```

If the $\tt cgi$ directories require root privileges, you need to use super-user privileges to perform the move:

33\$ sudo mkdir /home/cgi/ref
34\$ sudo mv hg18.crr /home/cgi/ref

11. Test your reference file by extracting a sequence from the reference genome based on userdefined coordinates:

```
35$ cgatools decodecrr \
--reference /home/cgi/ref/hg18.crr \
--range chr16:10000000-10000050
```

Congratulations. You are now ready to use cgatools!