

cgatools Methods
Software v1.4.0

Copyright © 2011 Complete Genomics Incorporated. All rights reserved.

cPAL and DNB are trademarks of Complete Genomics, Inc. in the US and certain other countries. All other trademarks are the
property of their respective owners.

cgatools Methods Table of Contents

© Complete Genomics, Inc. 2

Table of Contents
Preface ... 3

Conventions .. 3
CGI Data .. 3
References ... 3

Reference Tools.. 4
CRR File Format .. 4
FASTA Reference Sequences ... 4
fasta2ccr ... 4
crr2fasta.. 4
decodecrr ... 4
listcrr .. 5

Genome Comparison Tools .. 7
A Note on Conventions ... 7
The Problem of Genome Comparison.. 7

Problems Not Solved by Variant File Format .. 8
Genome Comparison with cgatools .. 10
snpdiff .. 10
calldiff .. 12
calldiff for scoring somatic variations (beta) ... 14
Many-Genome Comparison: listvariants (beta) .. 17
Many-Genome Comparison: testvariants (beta) .. 18
junctiondiff (beta) .. 19

Format Conversion Tools .. 20
map2sam .. 20

Representation of the Complete Genomics data in the SAM output ... 21
Rules to Set the "not primary" Flag (0x0100)... 23
Combining Mapping Records in SAM ... 23

evidence2sam (beta) ... 24
generatemasterVar (beta) .. 25

Modifying the masterVar file .. 28
Additional Information about the masterVar File ... 29

Annotation Tools .. 30
join (beta)... 30
junctions2events (beta) ... 31

cgatools Methods Preface

© Complete Genomics, Inc. 3

Preface

The Complete Genomics Analysis Tools (cgatools) is an open source project to provide tools for
downstream analysis of Complete Genomics data. This document describes the motivation and design
decisions for cgatools.

Conventions
This document uses the following notational conventions:

Notation Description

italic A field name from a data file. For example, the varType field in the variations data file indicates
the type of variation identified between the assembled genome and the reference genome.
Also used to indicate the values found in data files. For example, ChromosomeName indicates
that the value found in the data file is the name of a given chromosome.

bold_italic A file name from the data package. For example, each package contains the file manifest.all.

CGI Data
Complete Genomics, Inc. (CGI) delivers complete genome sequencing data to customers and
collaborators. The data include sequence reads, their mappings to a reference human genome, and
variations detected against the reference human genome. This document describes tools developed to
analyze this data.

References
 Assembly Pipeline Release Notes — Indicates new features and enhancements by release.
 Complete Genomics Variation FAQ — Answers to frequently asked questions about Complete

Genomics variation data.
 Complete Genomics Technology Whitepaper — A concise description of the Complete Genomics

sequencing technology, including the library construction process and the ligation-based assay
approach. It is available in the “Resources” section of the Complete Genomics website.
[www.completegenomics.com]

 Getting Started with CGI’s Data FAQ — Answers to questions about preparing to receive the hard
drives of data.

 Complete Genomics Data File Formats — A description of the organization and content of the format
for complete genome sequencing data delivered by Complete Genomics. It is available on the
Complete Genomics website. [www.completegenomics.com]

 Complete Genomics Science Article — An article from the Complete Genomics chief scientific officer
describing the process of how CGI maps reads (Science 327 (5961), 78. [DOI:
10.1126/science.1181498]). We also recommend you read the Complete Genomics Service FAQ as
background for this document. You can access the paper at www.drmanac.com at no charge.

 SAM — The Sequence Alignment/Map format is a generic format for storing large nucleotide
sequence alignments. This cgatools description is based on the SAM Format Specification “Sequence
Alignment/Map (SAM) Format,” Version 0.1.2-draft (August 20, 2009).
[http://samtools.sourceforge.net/SAM1.pdf]

 NCBI RefSeq alignment data — Reference assembly and alignment data.
[ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/mapview/seq_gene.md.gz]

http://www.completegenomics.com/�
http://www.completegenomics.com/�
http://www.drmanac.com/�
http://samtools.sourceforge.net/SAM1.pdf�
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/mapview/seq_gene.md.gz�

cgatools Methods Reference Tools

© Complete Genomics, Inc. 4

Reference Tools

At times, cgatools uses the reference sequence in a random-access manner. The most common reference
sequence format, FASTA, is not ideal for processing tasks that require random access because the entire
sequence must be read into memory at the start of the program, and this memory cannot be shared
among processes.

CRR File Format
cgatools uses its own file format, Compact Randomly Accessible Reference (CRR), to represent a
reference sequence. The CRR file format stores two bits per base of reference, plus lookup tables to
resolve regions of the reference that are represented by ambiguous IUPAC codes. CRR files are memory
mapped, so that processes can share a reference, and the overall memory requirement due to the
reference for all processes is less than 1 GB. The CRR file format does not preserve character case—
FASTA reference files often use case to denote the region’s repeat status—and considers all the bases
described in the reference FASTA sequence as upper case.

FASTA Reference Sequences
Complete Genomics supports two references. The first, which we refer to as “build 36,” consists of the
assembled nuclear chromosomes from NCBI build 36 (not unplaced or alternate loci) plus Yoruban
mitochondrion NC_001807.4. This assembly is also known as UCSC hg18. The second reference, which we
refer to as “build 37,” consists of the assembled nuclear chromosomes from GRCh37 (not unplaced or
alternate loci), plus the Cambridge Reference Sequence for the mitochondrion (NC_012920.1). This
assembly (though with an alternate mitochondrial sequence) is also known as UCSC hg19. The resulting
FASTA sequences are available here:

ftp://ftp.completegenomics.com/ReferenceFiles/build36.fa.bz2

ftp://ftp.completegenomics.com/ReferenceFiles/build37.fa.bz2

The CRR files can also be directly downloaded and are available here:

ftp://ftp.completegenomics.com/ReferenceFiles/build36.crr

ftp://ftp.completegenomics.com/ReferenceFiles/build37.crr

fasta2ccr
This tool converts FASTA sequences into a single reference CRR file. The result is the same as what is
available on the FTP site.

crr2fasta
This tool converts CRR sequence files to the FASTA file format.

decodecrr
This command retrieves the sequence for a given range of a chromosome.

ftp://ftp.completegenomics.com/ReferenceFiles/build36.fa.bz2�
ftp://ftp.completegenomics.com/ReferenceFiles/build37.fa.bz2�
ftp://ftp.completegenomics.com/ReferenceFiles/build36.crr�
ftp://ftp.completegenomics.com/ReferenceFiles/build37.crr�

cgatools Methods Reference Tools

© Complete Genomics, Inc. 5

listcrr
This command lists the chromosomes, contigs, or regions of ambiguous sequence within the reference,
depending on the parameters. The contigs described by listcrr are defined to be the contiguous sequence
bases separated by at least min-contig-gap-length, no-call bases, where min-contig-gap-
length defaults to 50. The default contigs correspond to the notion of contig employed in the Complete
Genomics data, such as reference scores.

After you have successfully downloaded a build 36 or 37 CRR file (that is, converted the downloaded
reference into CRR using fasta2crr) for use with Complete Genomics data, the listcrr command returns
the output shown in Figure 1:

Figure 1: listcrr Output for Build 36

ChromosomeId Chromosome Length Circular Md5
 0 chr1 247249719 false 9ebc6df9496613f373e73396d5b3b6b6
 1 chr2 242951149 false b12c7373e3882120332983be99aeb18d
 2 chr3 199501827 false 0e48ed7f305877f66e6fd4addbae2b9a
 3 chr4 191273063 false cf37020337904229dca8401907b626c2
 4 chr5 180857866 false 031c851664e31b2c17337fd6f9004858
 5 chr6 170899992 false bfe8005c536131276d448ead33f1b583
 6 chr7 158821424 false 74239c5ceee3b28f0038123d958114cb
 7 chr8 146274826 false 1eb00fe1ce26ce6701d2cd75c35b5ccb
 8 chr9 140273252 false ea244473e525dde0393d353ef94f974b
 9 chr10 135374737 false 4ca41bf2d7d33578d2cd7ee9411e1533
 10 chr11 134452384 false 425ba5eb6c95b60bafbf2874493a56c3
 11 chr12 132349534 false d17d70060c56b4578fa570117bf19716
 12 chr13 114142980 false c4f3084a20380a373bbbdb9ae30da587
 13 chr14 106368585 false c1ff5d44683831e9c7c1db23f93fbb45
 14 chr15 100338915 false 5cd9622c459fe0a276b27f6ac06116d8
 15 chr16 88827254 false 3e81884229e8dc6b7f258169ec8da246
 16 chr17 78774742 false 2a5c95ed99c5298bb107f313c7044588
 17 chr18 76117153 false 3d11df432bcdc1407835d5ef2ce62634
 18 chr19 63811651 false 2f1a59077cfad51df907ac25723bff28
 19 chr20 62435964 false f126cdf8a6e0c7f379d618ff66beb2da
 20 chr21 46944323 false f1b74b7f9f4cdbaeb6832ee86cb426c6
 21 chr22 49691432 false 2041e6a0c914b48dd537922cca63acb8
 22 chrX 154913754 false d7e626c80ad172a4d7c95aadb94d9040
 23 chrY 57772954 false 62f69d0e82a12af74bad85e2e4a8bd91
 24 chrM 16571 true d2ed829b8a1628d16cbeee88e88e39eb

cgatools Methods Reference Tools

© Complete Genomics, Inc. 6

After you have successfully downloaded a build 37 CRR file (or converted the downloaded reference into
CRR using fasta2crr) for use with Complete Genomics data, the listcrr command returns the output
shown in Figure 2:

Figure 2: listcrr Output for Build 37
ChromosomeId Chromosome Length Circular Md5
 0 chr1 249250621 false 1b22b98cdeb4a9304cb5d48026a85128
 1 chr2 243199373 false a0d9851da00400dec1098a9255ac712e
 2 chr3 198022430 false 641e4338fa8d52a5b781bd2a2c08d3c3
 3 chr4 191154276 false 23dccd106897542ad87d2765d28a19a1
 4 chr5 180915260 false 0740173db9ffd264d728f32784845cd7
 5 chr6 171115067 false 1d3a93a248d92a729ee764823acbbc6b
 6 chr7 159138663 false 618366e953d6aaad97dbe4777c29375e
 7 chr8 146364022 false 96f514a9929e410c6651697bded59aec
 8 chr9 141213431 false 3e273117f15e0a400f01055d9f393768
 9 chr10 135534747 false 988c28e000e84c26d552359af1ea2e1d
 10 chr11 135006516 false 98c59049a2df285c76ffb1c6db8f8b96
 11 chr12 133851895 false 51851ac0e1a115847ad36449b0015864
 12 chr13 115169878 false 283f8d7892baa81b510a015719ca7b0b
 13 chr14 107349540 false 98f3cae32b2a2e9524bc19813927542e
 14 chr15 102531392 false e5645a794a8238215b2cd77acb95a078
 15 chr16 90354753 false fc9b1a7b42b97a864f56b348b06095e6
 16 chr17 81195210 false 351f64d4f4f9ddd45b35336ad97aa6de
 17 chr18 78077248 false b15d4b2d29dde9d3e4f93d1d0f2cbc9c
 18 chr19 59128983 false 1aacd71f30db8e561810913e0b72636d
 19 chr20 63025520 false 0dec9660ec1efaaf33281c0d5ea2560f
 20 chr21 48129895 false 2979a6085bfe28e3ad6f552f361ed74d
 21 chr22 51304566 false a718acaa6135fdca8357d5bfe94211dd
 22 chrX 155270560 false 7e0e2e580297b7764e31dbc80c2540dd
 23 chrY 59373566 false 1e86411d73e6f00a10590f976be01623
 24 chrM 16569 true c68f52674c9fb33aef52dcf399755519

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 7

Genome Comparison Tools

A Note on Conventions
To call low certainty regions or “no-call” regions, Complete Genomics augments the alphabet {A, C, G, T}
with two additional characters:

 The “N” character corresponds to a one-base sequence that may be any of {A, C, G, T}.
 The “?” character corresponds to zero or more bases of unknown sequence.

The Problem of Genome Comparison
Genome comparison is the problem of identifying genomic sequence that is identical, compatible
(perhaps with no-calls), or incompatible, with sequence from another genome. Within the space of
genome comparison problems, there are three common tasks:

1. Is a genome identical, compatible, or incompatible with the reference genome at a given location?

2. Is a genome identical, compatible, or incompatible with a known common sequence?

3. Is a genome identical, compatible, or incompatible with a particular genome at a given location
within the reference genome?

The particular way a genome is described by re-sequencing technologies goes a long way towards solving
genome comparison problems 1 and 2: genomes are represented as a set of differences (or variants)
against the reference genome. The Complete Genomics variant file format differs from most other
common variant file formats in that in addition to describing the variants, it also distinguishes regions of
the genome that are called as reference from those that are no-called. As we will see later, this distinction
is essential in solving many comparison problems.

The following example shows how the Complete Genomics variations file describes the situation where
chr1 is a diploid chromosome and chr2 is a haploid chromosome:

chr1 reference: CATGACCCGCAAA-TCTGAAACTATCTGGCCCTTGGCAGGGG--A

chr1 haplotype 1: ?ATGACCTGCAAAATCTGAAACT--CTGGCCCTTGGCAGGGGGGA

chr1 haplotype 2: ?ATGACCCGCAAAATCTGAAACTATCTGGCTNTTGGCAGGGT--A

chr2 reference: TGATATTTTTCATCAACATTACAGGCA

chr2: TGATATTTTTNATCAACACGACAGGCA

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 8

Figure 3 shows the corresponding variant file.

Figure 3: Variant File
>
l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

t
o
t
a
l
S
c
o
r
e

h
a
p
L
i
n
k

x
R
e
f

1 2 all chr1 0 1 no-call = ?
 2 2 all chr1 1 7 ref = =
 3 2 1 chr1 7 8 snp C T 87 1 dbsnp:123

3 2 2 chr1 7 8 ref C C 58 2 dbsnp:123
4 2 all chr1 8 13 ref = =

 5 2 1 chr1 13 13 ins

A 36
 5 2 2 chr1 13 13 ins

A 42

 6 2 all chr1 13 22 ref = =
 7 2 1 chr1 22 24 del AT

47 1

 7 2 2 chr1 22 24 ref AT AT 55 2
 8 2 all chr1 24 29 ref = =

 9 2 1 chr1 29 31 ref CC CC 57 1
 9 2 2 chr1 29 31 no-call-ri CC TN 65 2
 10 2 all chr1 31 40 ref = =

 11 2 1 chr1 40 41 ref G G 101 1
 11 2 1 chr1 41 41 ins

GG 120 1

 11 2 2 chr1 40 41 snp G T 479 2
 12 2 all chr1 41 42 ref = =

 13 1 all chr2 0 10 ref = =
 14 1 1 chr2 10 11 no-call-rc C N 47

 15 1 all chr2 11 18 ref = =
 16 1 1 chr2 18 20 sub TT CG 102

 17 1 all chr2 20 27 ref = =

The genome is first aligned to the reference, and then split into loci. Each locus may describe multiple
alleles (if ploidy > 1), and for each allele at each locus, there may be one or more lines (or “calls”) to
describe the sequence. The variant file describes 0-based offsets within the reference chromosome.

In the variant file in Figure 3, locus 3 describes a heterozygous SNP (one-base polymorphism on one
allele, reference on the other allele). Locus 5 describes a homozygous insertion (in which the confidence
is slightly higher for allele 2 than allele 1). The allele column is used to distinguish the alleles of calls
within a locus. For example, the “ref” and “ins” calls of locus 11 are on the same allele, whereas the “snp”
call is on the opposite allele. To declare that two calls of different loci are on the same haplotype, the
format uses the hapLink field. Calls known to be on the same haplotype have the same hapLink value;
calls with different hapLink values may or may not be on the same haplotype (the phasing is no-called).

For a detailed reference of the Complete Genomics variant file format, see the Data File Format document
provided with your genome (See “References”).

Problems Not Solved by Variant File Format

One problem you may have noticed is that the problem of aligning a genome to the reference is not
necessarily well-defined. For example in Figure 3, the homozygous insertion at locus 5 could have also
been described by the same homozygous insertion three bases to the left. Or the substitution at locus 16
could have been described as two SNPs. Comparing two genomes that describe the same sequence in
different ways can be complicated.

We could make canonicalization rules such as “always use the rightmost insertion for any insertion that
has multiple possible representations” or “always decompose an allele consisting of a SNP, two reference
bases, then another SNP, into separate calls.” Indeed, Complete Genomics has rules like these that are

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 9

generally followed. But there are at least three remaining problems in solving the genome comparison
problems described above:

 Known variants are not always described in their canonical form.
For example, entries rs34330821 and rs34544546 in the dbSNP database of known variants describe
equivalent insertions that are 18 bases apart. This may seem superficial, in that dbSNP entries that
are not described in their canonical form can be canonicalized. But if our canonical form uses less
decomposition than the dbSNP submission, this may not be possible; if a dbSNP submission has been
decomposed, the submission has lost information about nearby variants that exist on the same
haplotype.

 Canonical forms of near-identical sequences are not necessarily near-identical.
For example, suppose we have a genome that is equivalent to a SNP and an insert against the
reference, as described in canonicalization 1:
Reference: TG A TGTGAATTGGTG --------------------------- AGT

Canonicalization 1: TG C TGTGAATTGGTG TAGTGTGAATGAGTGTGTGAATTGGTG AGT

Reference: TG A--------------------------- TGTGAATTGGTGAGT

Canonicalization 2: TG CTGTGAATTGGTGTAGTGTGAATGAGTG TGTGAATTGGTGAGT

The insert in canonicalization 1 might be the simplest way to describe the genome if the SNP did not
exist. But one could argue that the single substitution in canonicalization 2 is the simplest
canonicalization of the genome, given that the SNP does exist. (This would be the case for a
canonicalization which favors fewer calls.) It is not obvious by visual inspection that the insert from
canonicalization 1 and the substitution of canonicalization 2 differ by only a SNP.

 No-calls may not be canonicalized like insertions or deletions, such that an insert may be compatible
with another genome only when viewing a larger sequence of the genome.
For example, suppose we have the following reference and the following genome:

Reference: CGAAAAAAA-TTTTCG

Genome: CGAAAAAAAATTTTCG

Now suppose the genome reconstruction process discovers that an insertion has occurred, but it
does not know if the first base in the run of A’s is really an A, or perhaps was a C. In this case, we are
forced to align the no-call at the beginning as follows:

Reference: CG-AAAAAAATTTTCG

Genome: CGNAAAAAAATTTTCG

Length no-calls (“?”) may further complicate the situation so that the alignment is unclear. For
example, suppose in the same example above, in addition to not knowing if the first base of the run is
an A or a C, we also don’t know the length of the run of A’s at all. Suppose also that we know that the
run of T’s has increased in length from four to five. There could be at least two reasonable alignments
of the result, corresponding to a called insert or a called SNP:
Reference: CGAAAAAAATTTT-CG

Alignment 1: CG?AAAAAATTTTTCG

Reference: CG-AAAAAAATTTTCG

Alignment 2: CG?AAAAAATTTTTCG

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 10

Genome Comparison with cgatools
There is a wide spectrum of useful genome comparison methods, which range in their sensitivity to the
canonical alignment of called sequence. Algorithms that are very sensitive to canonical alignment tend to
declare sequences inconsistent when in fact they are consistent. Algorithms that are less sensitive to
canonical alignment tend to be less discriminating in terms of the quality of the alignment of called
sequence.

cgatools includes two genome comparison utilities that provide varying degrees of sensitivity to
inconsistent canonical alignments:

 snpdiff can be used to compare the results of a SNP caller to a Complete Genomics variant file. It is
quite sensitive to the canonical alignment of called sequence.

 calldiff can be used to compare two variant files. It is less sensitive to the canonical alignment of
called sequence.

Figure 4 illustrates the tradeoffs between the two utilities.

Figure 4: Sensitivity of Genome Comparison Algorithms

snpdiff
The snpdiff tool compares SNP calls to a Complete Genomics variant file. It is particularly useful for
comparing a Complete Genomics variant file to SNP calls provided by an alternative sequencing or
genotyping platform that only produces SNP calls. The input SNP calls must be in a tab-delimited file with
columns as in Figure 5. Note that the order of columns can vary but column titles must be conserved; the
Genotypes column is optional.

Figure 5: SNP Calls As Input to snpdiff

Chromosome Offset0Based GenotypesStrand Genotypes
chr13 17919222 + CC
chr13 17919650 + AT
chr13 17920392 + NN
chr13 17921548 + TT

Pro: Tends to flag poorly aligned
alleles.

Con: Tends to falsely declare
mismatches.

Pro: Genomes with consistent calls
are declared consistent.

Con: Tends to lose information that
calls are poorly aligned.

Sensitive to canonical
alignment

Insensitive to canonical
alignment

snpdiff calldiff

Genome comparison programs vary in their sensitivity to canonical alignment. Each algorithm has
its merits.

testvariants

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 11

Here, the Genotypes column specifies the base call for each allele. The output produced for this input may
be something along the lines of Figure 6:

Figure 6: Output from snpdiff

Chromosome Offset0Based GenotypesStrand Genotypes Reference Variants DiscordantAlleles NoCallAlleles
chr13 17919222 + CC T CC 0 0
chr13 17919650 + AT A AA 1 0
chr13 17920392 + NN G GN 0 1
chr13 17921548 + TT T .- 0 0

The result for each allele described in the Variants column above are any base call (“A”, “C”, “G”, or “T”), a
no-call (“N”), a deletion (“-”), or a larger variation that is not consistent with a SNP at all (“.”). To compare
the SNP calls to the calls in the variant file, snpdiff first determines the variant file’s calls at the given
position. The algorithm used is sensitive to the canonical alignment, and it is aggressive in terms of
making a base call at positions where the call does not have a varType of “snp” or “ref”. That being said, it
is tested to be largely concordant with SNP calls made by several alternative technologies. A discordance
found by snpdiff is likely to be a true discrepancy between the calls made by the SNP caller and the
variant file. The algorithm employed by snpdiff is as follows, for each allele:

 Find the call in the variant file that overlaps the position in question. Use this call alone to determine
the base call for the position in question.

 Walk the alleleSeq column of the call from the right and left until reaching the position in question.
For each direction, any of the following outcomes may be reached:

 WALK_OK – The position in question was reached.
 WALK_EOS – The end of alleleSeq was reached before getting to the position in question.
 WALK_INCOMPATIBLE – A base call incompatible with the reference base was found at

some position before reaching the position in question.
 WALK_LENGTH_NOCALL – A length no-call (represented by “?”) is discovered before

reaching the position in question.
 Combine the results of the walk from the right and left to determine the result. The results are

combined by the following rules:
 If the walk from the left and right both end up at the position of interest (WALK_OK):

• If the base calls discovered by the two walks are in conflict, declare a larger
variation (“.”).

• If the base calls discovered by the two walks are consistent and at least one is called,
use the base call.

• If both walks end up with a no-call (“N”), the result is no-call.
 If only one walk ends up at the position of interest (WALK_OK), use the base discovered by

that walk.
 If neither walk ends up at the position of interest, then:

• If either walk ends up as WALK_LENGTH_NOCALL, mark the position as no-call
(“N”).

• If either walk ends up as WALK_EOS, mark the position as deleted (“-”).
• Otherwise, mark the position as a larger variant (“.”).

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 12

Figure 7 shows some examples. The reference base we wish to determine a call for is highlighted in red:

Figure 7: Algorithm Logic from snpdiff

reference alleleSeq Walk L->R Walk R->L Outcome
A C WALK_OK: C WALK_OK: C C
ACGTACGT ACGTACGT WALK_OK: T WALK_OK: T T
G CC WALK_OK: C WALK_OK: C C
G CG WALK_OK: C WALK_OK: G .
ACGT AGGN WALK_OK: G WALK_OK: G G
ACGT AGG? WALK_OK: G WALK_LENGTH_NOCALL G
ACGT ?GG? WALK_LENGTH_NOCALL WALK_LENGTH_NOCALL N
ACGT CGGT WALK_INCOMPATIBLE WALK_OK: G G
ACGT CGGG WALK_INCOMPATIBLE WALK_INCOMPATIBLE .
CACACAC CAC WALK_EOS WALK_EOS -

calldiff
The calldiff tool compares two variant files to determine where the two genomes differ, and how. To
achieve this, it first gathers variants into superloci, which may account for several nearby variants. It
compares the genomes for each superlocus then refines the comparison result to get call-level and locus-
level detail. For example, it can be used to help find potential somatic mutations in a tumor-normal
comparison, or to find where two assemblies of the same genome differ.

calldiff is less sensitive than snpdiff to the canonical alignment.

If the superloci are too small, superlocus comparison tends to be overly sensitive to canonical alignment.
But if superloci are too large, superlocus comparison tends to allow any sequence from one genome to
match in a gap of unknown sequence in the other genome. As an example of a superlocus that is too large,
suppose we had the sequence from a haploid chromosome of two genomes shown in Figure 8:

Figure 8: Example of a Superlocus that is too Large

When considering the red superlocus in Figure 8, and when interpreting the meaning of the calls literally,
we can see that all the called bases between the “?” characters in Genome A may be aligned to the “?”
character of Genome B, and the genomes are consistent. But when considering the blue box to be the
superlocus, we see that the genomes are inconsistent. In different contexts, one superlocus or the other
may be preferable, but generally for most comparisons, we would want a comparison algorithm in this
case to state the inconsistency between the genomes. To achieve this, a comparison algorithm must
either be very precise about how to compare superloci or very precise about how to define a superlocus:

 Precise about how to compare superloci: such as when using the red superlocus, determine that there
is enough high complexity and uncommon sequence between the “?” characters in Genome A that the
SNP in the middle must be aligned as called.

 Precise about how to define a superlocus: such as always use the blue superlocus in this situation.

Reference: GGCATGTGCCTGTGGTTCCAGCAACTAGAGAAGCTGAGGTGGGAGGATCGCTT

Genome A: GG?ATGTGCCTGTGGTTCCAGCAACTAGAGAAGCTGAGGTGGGAGGATC?CTT

Genome B: GGCATGTGCCTGTGGTTCCAGCAACCAGAGAAGCTGAGGTGGGAGGATC?CTT

The superlocus is circled in red. Genomes A and B are consistent when considering the red
superlocus as a whole because the called sequence between the “?” characters in Genome A may
be aligned to the “?” character of Genome B.

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 13

calldiff achieves its specificity by being precise about its superlocus definition.

To determine the superloci, calldiff begins by labeling each reference region containing a variant in either
variant file as a superlocus. The superloci are then extended according to the following criteria:

1. Circular prefix/suffix matching. For every call whose alleleSeq does not contain “N” or “?”, do prefix
matching to the right along the reference and suffix matching to the left along the reference of both
the alleleSeq and the reference sequence, such that the superlocus extension does not exceed P bases
(the P limit is necessary to limit the superlocus size for pathological situations). For example, if the
call is for an insertion of “ACGT” and the reference sequence directly to the right is “ACGA”, three
prefix bases of the alleleSeq can be matched to the reference sequence directly to the right, indicating
that an equivalent insertion exists at each position in that range. So the superlocus must be extended
to account for any variants within three bases to the right of the variant. Additionally, in the example
above, if the sequence directly to the right of the call was “ACGTACGA”, then the entire insertion of
four bases can be prefix matched, and continuing along the reference, the next three bases also match
the prefix of the insertion. (This is circular prefix matching.) So the superlocus must be extended to
the right by seven bases.

2. Fixed base count. Always extend superloci to the right and left by N bases, where N is a command-
line configurable parameter. Currently, this parameter defaults to 0.

3. Fixed count of distinct 3-mers. Always extend by M distinct reference 3-mers to the right and left,
where M is a command-line configurable parameter. In regions of low reference sequence
complexity, this results in longer superloci. In regions of high reference sequence complexity, this
results in shorter superloci. Currently, this parameter defaults to 4.

After the superloci have been fully extended, overlapping and abutting superloci are combined into a
single superlocus.

After superloci have been found, all possible phasings consistent with the hapLink values in the calls are
used to produce hypotheses about what the genome sequence is, for each variant file. Then each
permutation of each hypothesis (one permutation for haploid, two for diploid, and six for triploid) is
compared to each hypothesis of the other variant file according to a literal interpretation of their
sequence. In other words, any number of bases may align against length no-calls (“?”). The best
comparison is produced, such that the number of discordant haplotypes is minimized. The alleles of the
best comparison are then segmented to get call-level comparison results. The call-level comparison
results are defined to be no worse than the result for the allele as a whole; if a segment comparison
results in a worse comparison result than the allele as a whole, the allele’s comparison result is used in its
place. The call-level comparison results are then used to classify the comparison of each locus as a whole.

The results of calldiff are, for each allele, a comparison classification as described in Table 1.

Table 1: Classification of Comparison Results

Classification Description

ref-identical The alleles of the two variant files are identical, and they are consistent with the reference.
alt-identical The alleles of the two variant files are identical, and they are inconsistent with the reference.
ref-consistent The alleles of the two variant files are consistent, and they are consistent with the reference.
alt-consistent The alleles of the two variant files are consistent, and at least one is inconsistent with the reference.
onlyA The alleles of the two variant files are inconsistent, but only file A is inconsistent with the reference.
onlyB The alleles of the two variant files are inconsistent, but only file B is inconsistent with the reference.
mismatch The alleles of the two variant files are inconsistent with each other and with the reference.
phase-mismatch The two variant files would be consistent if the hapLink field had been empty, but the hapLink entry

causes them to be inconsistent.
ploidy-mismatch The superlocus did not have uniform ploidy.

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 14

For non-haploid superloci, the comparison results for the alleles are joined by a semi-colon. For example,
for a diploid hypothesis where variant file A calls reference and variant file B calls a het SNP, you might
have a comparison result that looks like “ref-identical;onlyB”.

For example, suppose we use calldiff to compare a tumor genome (file A) and a normal genome (file B)
from the same individual. We can find purported somatic mutations by looking for “ref-identical;onlyA”.
We can find purported loss of heterozygosity (LOH) by looking for “ref-identical;onlyB” or “alt-
identical;onlyA”. We might expect fewer superloci classified as “alt-identical;onlyB”, as the likely reason
for this is assembly error – overcall in the normal genome.

calldiff for scoring somatic variations (beta)
Somatic variation discovery is an important use case for calldiff. Because we may expect thousands of
erroneous variant calls in a genome and thousands of true somatic variations, we need a mechanism to
tease apart the true somatic mutations from false somatic mutations.

The calldiff tool uses the scores provided in Complete Genomics data to determine which somatic
mutations are called with higher confidence, and simplifies the information into a single somatic score. It
does so for all loci where the genome A has a simple variation (a single SNP, DEL, INS, or SUB) and
genome B is called as reference. This functionality is provided through the Somatic Output report, which
annotates the somatic calls from the variant file with the SuperlocusId, locusClassification, the VarScoreA,
RefScoreB, SomaticCategory, VarScoreARank, RefScoreBRank, and SomaticScore. Figure 9 shows a portion
of an example Somatic Output report; the definitions of the score columns follow.

Figure 9: Example of Somatic Output

S
u
p
e
r
l
o
c
u
s
I
d

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

l
o
c
u
s

…

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

…

V
a
r
S
c
o
r
e
A

R
e
f
S
c
o
r
e
B

S
o
m
a
t
i
c
C
a
t
e
g
o
r
y

V
a
r
S
c
o
r
e
A
R
a
n
k

R
e
f
S
c
o
r
e
B
R
a
n
k

S
o
m
a
t
i
c
S
c
o
r
e

220 het-sub 15 … sub TCC ACT … 401 50 diploid-indel 0.418 0.052 0.102
427 hom-snp 16 … snp G T … 313 63 diploid-snp 0.180 0.099 0.188
659 het-ins 18 … ins A … 52 102 diploid-indel 0.031 0.348 0.062
753 no-call-ins 19 … ins T … 89 19 diploid-indel 0.090 0.005 0.010
924 het-snp 21 … snp C T … 65 50 diploid-snp 0.008 0.052 0.016

To determine the somatic score of a variant in genome A but not genome B, loci of genome A are first
categorized as haploid-snp, haploid-indel (for DEL, INS, or SUB loci), diploid-snp, or diploid-indel. This
categorization is called the “somatic category” and is recorded in the column of that name.

VarScoreA for each locus is then assigned, based on the input data, as indication of the strength of
evidence for the variant. For haploid-snp or diploid-snp loci, VarScoreA equals the negative of the
reference score. For haploid-indel or diploid-indel loci, VarScoreA equals the evidence score. In either
case, a greater VarScoreA indicates increased confidence, but VarScoreA is not necessarily comparable
from one SomaticCategory to another.

RefScoreB is also assigned for each variant present in genome A and not B. RefScoreB is the reference
score at the locus in genome B and does not depend on the SomaticCategory.

From VarScoreA and RefScoreB, we compute VarScoreARank and RefScoreBRank. VarScoreARank is the
fraction of all variant loci in genome A in a SomaticCategory whose VarScoreA is less than the VarScoreA
for this locus. RefScoreBRank is an estimation of the fraction of all loci where genome B is correctly called
as reference and has a RefScoreB less than the RefScoreB for this locus.

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 15

Given these definitions of VarScoreARank and RefScoreBRank, we might expect both VarScoreARank and
RefScoreBRank for true somatic mutations to be distributed uniformly. The distribution for false somatic
variants corresponding to false positives in the tumor will have low values of VarScoreARank, and the
variants corresponding to false negatives in the normal will have low values of RefScoreBRank. Figure 10
shows an example of the distributions.

Figure 10: Scatterplots of RefScoreBRank versus VarScoreARank for Somatic Variant Calls

True somatic variants are expected to be evenly distributed on the plot. False positive variant calls in the
tumor are expected to cluster near the y axis. False negatives in the normal are expected to cluster near
the x axis. For the replicate pair, all the somatic variants are false and cluster near the axes. For the
tumor+normal pair, a large fraction of the called somatic variants are true, so they are better distributed
on the plot.

Suppose we filter somatic variants where VarScoreARank < X or RefScoreBRank < X. Under the
assumption that true somatic mutations have evenly distributed values of VarScoreARank and
RefScoreBRank, the relative sensitivity of the filtered data set is (1 − X)2. The filtered set of mutations
corresponds to the upper right area of the scatter plots given in the above figure. SomaticScore is
computed as:

 𝑆𝑜𝑚𝑎𝑡𝑖𝑐𝑆𝑐𝑜𝑟𝑒 = 1 − (1 − min(𝑉𝑎𝑟𝑆𝑐𝑜𝑟𝑒𝐴𝑅𝑎𝑛𝑘,𝑅𝑒𝑓𝑆𝑐𝑜𝑟𝑒𝐵𝑅𝑎𝑛𝑘))2

Thus, filtering where SomaticScore < Y is equivalent to filtering the data set where VarScoreARank or
RefScoreBRank is less than X = 1 − √1 − 𝑌. As shown before, the sensitivity of such a filter is (1 − 𝑋)2, so
the sensitivity of the filter where SomaticScore < Y is 1-Y. We can consider SomaticScore to be the same as
1- sensitivity. As a result, a SomaticScore threshold applied across different genomes will represent the
same relative sensitivity. Figure 11 shows an ROC curve plotting the expected sensitivity as a function of
the number of somatic mutations. At an expected sensitivity of 90%, there are 174 false somatic SNPs in
the NA12878 replicate pair, or one false somatic SNP every 17.7 Mb.

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 16

Figure 11: ROC Curve for Somatic Variant Calls

Table 2 lists the number of apparent somatic variations observed at various thresholds.

Table 2: False Positive and Total Discovered Somatic SNVs at Various Somatic Score Thresholds

Somatic Score
Threshold

False Positives
(Genome-wide, estimated from
NA12878 replicates)

Somatic SNVs
Discovered in NCI-H1395

0.00 7,522 34,600
0.01 2,609 28,150
0.02 1,501 26,348
0.03 971 25,402
0.04 705 24,715
0.05 519 24,165
0.10 174 22,092

The trade-off between sensitivity and specificity achievable in any particular tumor-normal comparison
would vary depending on several factors:

 The extent of aneuploidy, impurity, and heterogeneity within the tumor sample
 The coverage characteristics of the two genomes
 The number of true somatic events

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 17

Many-Genome Comparison: listvariants (beta)
The superlocus approach to genome comparison achieves a good combination of sensitivity to genomic
variation and insensitivity to canonical alignment for a small number of genomes. But as the number and
variety of genomes grows, superloci can grow arbitrarily large. As shown in “calldiff,” when superloci
grow too large, the literal interpretation of sequence compatibility employed by calldiff tends to be
insensitive to real genomic differences.

cgatools supports many-genome comparison through the combination of two tools: listvariants and
testvariants. The listvariants command lists all the genomic mutations found in an arbitrary number of
genomes, and the testvariants command tests each of those mutations against a set of genomes to
determine the compatibility of the genomes to each mutation.

The listvariants command merges and lists all the fully called mutations from a set of variant files (that is,
each line from each variant file that is fully called and inconsistent with the reference). listvariants is as
specific as it can be about mutations without splitting up called mutations from the variant file. For
example:

Reference: CGAATTACAT

Allele 1: CGCATTATAT

Allele 2: CGAATTACAT

In this case, suppose the variant file listed this sequence as two SNP mutations with the same hapLink to
indicate they are on the same haplotype. In this case, listvariants also lists the two SNPs separately. In
this way, the many-genome comparison can be very specific about where genomes differ, although it
loses information about which variants occurred on the same haplotype as other variants.

listvariants also canonicalizes any input variants it encounters before writing them to the output. It uses
the rightmost variant that is equivalent to the input variant. For example:

Reference: CG-AAAAA-CAT

Alternative 1: CG-AAAAAACAT

Alternative 2: CGAAAAAA-CAT

The two alternatives above have the same sequence, but have different alignments against the genome. If
the input genomes list both insertions, the alternative 2 alignment is canonicalized (transformed) into the
alternative 1 alignment because it is the rightmost alignment that describes an equivalent sequence. The
two variants are then merged as equivalent, and a single output record is produced.

The output records retain the annotations present in the input variant file. Figure 12 shows an example:

Figure 12: Output Records Retain Input Annotations

variantId chromosome begin end varType reference alleleSeq xRef
1034 chr1 972803 972804 snp T C dbsnp:rs3128102
1035 chr1 972856 972857 snp T C dbsnp:rs10267
1036 chr1 975024 975025 snp G T
1037 chr1 975128 975129 snp C T dbsnp:rs2275813
1038 chr1 975311 975313 sub GG A dbsnp:rs56255212
1039 chr1 975322 975323 snp T C dbsnp:rs2275811
1040 chr1 975371 975372 snp G A
1041 chr1 975900 975901 snp G A

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 18

Many-Genome Comparison: testvariants (beta)
The testvariants command processes the variants listed by listvariants and writes each input record to
the output, along with a flag for each allele of each genome to indicate if the variant is present on that
allele. Table 3 lists set of possible flags for each allele:

Table 3: testvariants Flags

Flag Description

0 The allele is inconsistent with the variant.
1 The allele is fully called, and is consistent with the variant.
N The allele has no-calls, and the allele is consistent with the variant.

For example, for the listvariants example in Figure 12, the testvariants output against three genomes is
shown in Figure 13:

Figure 13: testvariants Output against Three Genomes

variantId chromosome begin end varType reference alleleSeq xRef ASM1 ASM2 ASM3
1034 chr1 972803 972804 snp T C dbsnp:rs3128102 11 01 11
1035 chr1 972856 972857 snp T C dbsnp:rs10267 11 11 11
1036 chr1 975024 975025 snp G T 00 01 NN
1037 chr1 975128 975129 snp C T dbsnp:rs2275813 00 01 00
1038 chr1 975311 975313 sub GG A dbsnp:rs56255212 11 1N 1N
1039 chr1 975322 975323 snp T C dbsnp:rs2275811 11 01 1N
1040 chr1 975371 975372 snp G A 00 01 00
1041 chr1 975900 975901 snp G A 1N 00 01

In this example, ASM1 and ASM3 are homozygous for variant 1034, but ASM2 is heterozygous. ASM1
does not have variant 1036, but ASM2 is heterozygous for the variant, and ASM3 is no-called at that
position.

The testvariants command tests each variant against each genome independently. To do so, it first
constructs a one-genome superlocus to keep track of which loci may be used in the comparison. The
superlocus is constructed using the same superlocus rules as calldiff, except the “Fixed count of distinct
3-mers” used is 6 instead of 4.

After a superlocus has been found, all possible phasings consistent with the hapLink values in the calls
are used to produce hypotheses about what the genome sequence is. testvariants chooses the phasing
that results in the most 1’s, then the most 0’s.

To test a particular phasing, for each allele, testvariants first finds a base set of calls consisting of the
minimal set of calls overlapping the variant, extended to the left and right according to the prefix/suffix
matching rule of calldiff. Then testvariants compares the call sequence to the variant sequence (extended
to the left and right by reference sequence), for every sequential sequence of calls in the superlocus that
covers the base set of calls. This results in “1” if any compared sequence matches the variant sequence, or
“N” if any compared sequence is compatible with the variant sequence but contains no-calls. Otherwise,
the result is “0”.

Although the testvariants algorithm may achieve a reasonable middle ground between sensitivity to real
genomic variation and insensitivity to canonical alignment for the many-genome comparison problem,
the following limitations apply:

 testvariants is more sensitive to the canonical alignment than calldiff. As such, it is not the ideal tool
for comparing a small number of genomes (such as 2 or 3).

 For simplicity of output file format and interpretation, testvariants does not transfer the score of the
variant calls or the reference scores in the input genomes to the output file. Not having scores further
limits the testvariants output for use in analyzing the genomic differences of a small number of
genomes.

cgatools Methods Genome Comparison Tools

© Complete Genomics, Inc. 19

junctiondiff (beta)
The junctiondiff tool finds junctions present in one genome (genome A) but not another (genome B). It
addresses the following pitfalls when comparing the set of junctions present in two genomes:

 Junction coordinates are not always exact.
When a junction’s sequence cannot be resolved (indicated when the value in the
JunctionSequenceResolved column of the junction file is “N”), the coordinates of the junction are
estimations based on the expected distribution of mate gaps of the DNB reads that contribute to the
discordant mate pair analysis. To resolve this issue, junctiondiff considers all junction coordinates
within N bases to be equivalent. Here, N is controlled by the command-line configurable parameter
“--distance”.

 Junction coordinates for the same junction are not always the same.
Just as for short indels, the same junction sequence can sometimes be described at slightly different
coordinates. Additionally, small variants near the junction may cause the junction coordinates to shift
slightly. This pitfall is again resolved by the “--distance” command-line parameter.

 Complete Genomics junction detection algorithm has low sensitivity to very short deletions.
Slight differences in mate gap distribution or slight changes in coverage bias characteristics for the
two genomes may mean that a junction that is present with good support in genome A is not called in
genome B due to lack of support. To resolve this issue, junctiondiff provides the option
“--minlength” to filter out junctions consistent with short deletions.

 There is low sensitivity for junctions with few discordant mate pair alignments.
Complete Genomics junction caller requires 3 discordant mate pair alignments of support to call a
junction. If a junction has a low expected count of discordant mate pair alignments (for example, 3),
whether the junction achieves sufficient support is a matter of chance. To address this issue,
junctiondiff provides the option “--scoreThresholdA” to filter out junctions with few discordant
mate pair alignments.

 Genome sample B may be contaminated by genome sample A.
This often occurs, for example, if genome sample B is a tumor and genome sample A is the matched
normal. For this reason, the junctiondiff tool allows you to specify a cutoff of support using the
“--scoreThresholdB” option for genome B.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 20

Format Conversion Tools

The primary goal of the Complete Genomics export formats is to represent the data in a concise and
simple way. As such, they are not always the best formats for doing certain kinds of data processing.
Moreover, some users have existing programs that expect inputs in various other data formats. As a
result, cgatools aims to provide data conversion capabilities.

map2sam
The map2sam tool converts Complete Genomics exported reads and initial reference mappings to the
SAM format. For pipelines that require eventually converting to the BAM format, the output of map2sam
can be sent to standard output, which can be processed by SAM Tools. For example, this command
pipeline creates an indexed, reference-sorted BAM file:
cgatools map2sam --reads=/path/to/reads.tsv.bz2 \
 --mappings=/path/to/mappings.tsv.bz2 \
 --library=/path/to/lib_DNB.tsv \
 --reference=/path/to/build36.crr | \
 samtools view -uS - | \
 samtools sort - result && samtools index result.bam

Complete Genomics reads are initially mapped to the reference genome using a fast algorithm, and these
initial mappings are later both expanded and refined by a form of local de novo assembly applied to
putatively variant regions of the genome.

IMPORTANT: The map2sam tool converts the initial reference mappings, and not the additional
mappings to variants discovered during the assembly process.

The following additional limitations apply to map2sam output:

 The converted mappings are reference mappings only. The mappings used as evidence to make indel
calls are not included.

 SAM does not have strong support for overlapping sub-reads (for example, the negatively sized intra-
read gaps), which are present in Complete Genomics data. To represent overlapping reads, the
strongest base call is put in the SAM mapping record, and the alternative base calls are represented
using the GS/GQ/GC tags of the mapping record.

 The SAM validator provided by the Picard project (picard.sourceforge.net) does not allow specifying
a primary mapping for reads that do not have consistent mates. As a result, only reads which have
consistent mate pair mappings have a mapping marked as the primary mapping record (mapping
record with the “not primary” FLAG, 0x0100, set to 0).

 The NM tag (edit distance to reference sequence) is not currently produced by map2sam.
 The R2 and Q2 tags (mate sequence and quality scores) can be generated optionally.

http://picard.sourceforge.net/�

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 21

Representation of the Complete Genomics data in the SAM output

The detailed descriptions of the map2sam output in Table 4 and Table 5 assume some familiarity with
Complete Genomics data and terminology. We recommend you consult the Complete Genomics Data File
Formats document and FAQs if you are mostly familiar with other Next-Gen platforms. These documents
can be obtained from support@completegenomics.com. Additionally, the Complete Genomics assembly
process and some of its implications are described in the Complete Genomics technology whitepaper and
in more detail the Science paper. We recommend you consult the Complete Genomics FAQ documents in
considering how to best use these data. See “References” for more information on these documents.

This description is based on the SAM Format Specification described in “References.”

Table 4: Header Fields

Section Tag Value Description Example

@HD VN 0.1.2 Version of SAM spec
 SO “DnbId sorted” Sort Order.

Note: A DNB is a clone.

@SQ SN ChromosomeName Sequence Name. Included for all
chromosomes in the reference
genome.

SN:chr1

 LN ChromosomeLength Length of the chromosome. Included
for all chromosomes in the reference
genome.

LN:247249719

 UR ReferenceFilePath Path to the input reference file UR: reference.crr
 AS ASM ID CGI Data Analysis Pipeline Run ID AS:GS19240-ASM
@RG ID LaneID Slide and Lane ID ID:GS08081-FS3-L02
 SM SampleID Sample Id SM:GS00028-DNA-C01
 LB LibraryID Library ID of the library LB:GS00433-CLS
 PU LaneID Slide and Lane ID PU:GS08081-FS3-L02
 CN "Complete Genomics" Name of sequencing center producing

the read

 DT ExportDate The CGI data analysis timestamp
stored in the CGI reads file.

DT:2010-01-21

 PL "Complete Genomics" Platform/technology used to produce
the read.

@PG ID "cgatools" Program name
 VN Version Program version VN:0.5.0
 CL Command line Command line Complete string

mailto:support@completegenomics.com�

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 22

Table 5: Mapping Record Fields

Field Value SAM Definition map2sam Usage

QNAME SlideID-LaneID:
DnbOffset

Query Name The QNAME value is constructed from the full
lane Id (SlideId+LaneId) and 0-based DNB offset
from the beginning of the Reads file provided as
input. For example: GS08081-FS3-L02-3:244

FLAG 0x0001 The read is paired in
sequencing.

The flag is always set for CGI data. The current
CGI technology always produces paired reads.

 0x0002 Each fragment properly
aligned according to the
aligner

The flag is set to 1 if both mates are mapped.

 0x0004 The query sequence
itself is unmapped.

The flag is set when there are absolutely no
mappings found for this HalfDNB.

 0x0008 The mate is unmapped. The flag is set only when there are no mappings
found for this HalfDNB’s mate.

 0x0010 Strand of the query 0 for forward; 1 for reverse strand.
 0x0020 Strand of the mate 0 for forward; 1 for reverse strand.
 0x0040 The read is the first read

in a pair.
The flag is set if the current HalfDNB is from the
5’ end of the original cloned insert.

 0x0080 The read is the second
read in a pair.

The flag is set if the current HalfDNB is from the
3’ end of the original cloned insert.

 0x0100 The alignment is not
primary.

The flag is set if there is a better mapping of the
same HalfDNB having higher value of MAPQ (see
MAPQ in this table) or the other HalfDNB is not
mapped.

 0x0200 The read fails
platform/vendor quality
checks.

Always set to 0.

 0x0400 The read is either a PCR
duplicate or an optical
duplicate.

Always set to 0.

RNAME ChromosomeID
or "*"

Reference sequence
NAME

Can be "*" if this HalfDNB doesn't have mappings.
If the HalfDNB is not mapped itself but has a
mapped mate the RNAME of the mate is reported.

POS Current Mapping
Position or 0

1-based leftmost
POSition/coordinate of
the clipped sequence

The position reported in a Mappings file record
from a CGI export package offset by 1 (CGI export
format reports mapping positions 0-based). 0 is
reported if there are no mappings found for this
HalfDNB and there are not mapped mates. If the
HalfDNB is not mapped itself but has a mapped
mate the POS of the mate is reported.

MAPQ CG_Mapping weight MAPping Quality (Phred-
scaled probability that
the mapping position of
this read is incorrect.)

The probabilities are reported in different ranges
for consistent pair reads (Flag 0x0002, case 1)
and for non-paired mappings. CGI does not
recommended that values of consistent and
inconsistent mappings be directly compared.

CIGAR CigarString and
GS/GQ/GC flags

Extended CIGAR string Currently, CGI initial mappings files do not allow
insertions or deletions. Therefore, only M and N
operations are used in the CIGAR field. The
negative gaps are represented using GS/GQ/GC
flags. The CIGAR sequence will represent the
positive gaps using N and ignore the negative
gaps.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 23

Field Value SAM Definition map2sam Usage

MRNM "=" or ChromosomeID
or "*"

Mate Reference
sequence NaMe; "=" if
the same as RNAME

Reports "*" if there is no consistent mate found.

MPOS MatePosition
or 0

1-based leftmost mate
POSition of the clipped
sequence

Reports 0 if there is no consistent mate found.

ISIZE DistanceToMate
or 0

Inferred Insert SIZE The distance between the consistent mate start
position and the start position of the current
HalfDNB mapping. The value is 0 if the mates are
mapped to different chromosomes.

SEQ Sequence Query SEQuence;
"=" for a match to the
reference;
n/N/. for ambiguity

The regions of overlapping bases in the negative
gaps contain the bases with higher scores.

QUAL QualityScores Query QUALity; ASCII-33
gives the Phred base
quality

The values are copied from the corresponding
record of the CGI Reads file.

TAG GS/GQ/GC
RG
R2/Q2
XS

Tags GS/GQ/GC flags are used to represent CGI-
specific negative wobble gaps in HalfDNBs. See
SAM Format Specification in “References” for the
description of the flags. RG is a standard tag
containing the read group name.
R2, Q2 – are the optional standard tags.
XS:I:1 the optional user-defined tag is marking an
SV candidate.

Rules to Set the "not primary" Flag (0x0100)

The flag "not primary" is set for a HalfDNB mapping in the following cases:

 There is another mapping of the same HalfDNB having a higher MAPQ value.
 The mapping of a HalfDNB doesn't have a consistent mate pair mapping, and there are mappings

found for the mate HalfDNB.
 The mapping’s best mate has a best mate that is not the current mapping.

Combining Mapping Records in SAM

1. The best mapping pair (the best score) of a DNB is reported with the "non-primary" flag set to 0. Both
mappings should refer to each other as the best mates.

2. All the other mappings of that DNB are reported in non defined order and have the "non-primary"
flag set to 1.

3. If both HalfDNBs are mapped uniquely but not consistently, they are not reported as primary ("non-
primary" flag is set to 0) even though they are not consistent mates.

4. If only one HalfDNB is mapped, the best mapping of that HalfDNB is reported followed by a "non-
mapped" mapping record of the other HalfDNB. The alignment position of the other HalfDNB is set to
the same values as the mapped HalfDNB and the "non-primary" flag of the records is set to 0. The not
mapped record will be marked as "not mapped" by appropriate flags.

5. All the other mappings of the mapped read from number 4 above are reported one record per
mapping having "non-primary" flag set to 1.

6. All the not mapped reads are reported in pairs aligned to the 0 position. The alignment position is
important to keep the records together while sorting and merging BAM files.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 24

evidence2sam (beta)
The evidence2sam tool converts Complete Genomics evidence mappings to the SAM format. The current
implementation is in beta form. For pipelines that require eventually converting to the BAM format, the
output of evidence2sam can be sent to standard output, which can be processed by SAM Tools. For
example, this command pipeline creates an indexed, reference-sorted BAM file:
cgatools evidence2sam \
 --beta \
 --evidence-dnbs=/path/to/evidenceDnbs-chrN-XXX.tsv.bz2 \
 --reference=/path/to/build36.crr | \
 samtools view -uS - | \
 samtools sort - result && samtools index result.bam

Complete Genomics evidence mappings are the mappings that were used to call variations found by the
CGI genome assembly process. The assembly process uses a local de novo method to find likely alleles for
a variation interval (small region of the genome, typically less than 200 bases), then an optimization
process to refine the allele choices. The evidence mappings are DNB alignments that indicate support for
the best hypothesis found during the assembly process. The evidence2sam tool can be used to convert
these mappings to SAM for visualization in a genome browser like IGV. The details of the Complete
Genomics data representation in the SAM output are covered in the map2sam tool description in this
document.

In two situations, a DNB may have multiple mapping records present in the evidence DNB mappings
provided by Complete Genomics. First, if the best hypothesis is heterozygous and contains two non-
reference alleles, support is also given for the reference allele. In this case, if a DNB supports two of the
three alleles equally well (or similarly well) and not the third allele, then the evidence DNB mappings
contain a record showing alignment of the DNB to each of the two alleles it supports. Second, if there are
two regions of the genome with similar sequence such that DNBs align well to either sequence, those
DNBs may be used as evidence for alleles in both regions. A post-processing step of the CGI assembly
process finds such regions and no-calls them.

Because most tools that visualize SAM do not have rich features to specify an allele a DNB maps against,
visualization of the duplicate mapping records present in the evidence can be confusing. For this reason,
the evidence2sam tool has an option to de-duplicate the mappings present in the evidence, for both forms
of duplication described above, for duplicate DNB mappings that are nearby on the reference. Specifically,
the evidence2sam tool de-duplicates using the following algorithm, for each variation interval:

1. Update the read-ahead buffer to ensure it contains all evidence mapping records up to 1 Kb to the
right of the position of the rightmost evidence mapping record for this interval.

2. Moving from position 0 to the end of the chromosome, processing each mapping record of the
current variation interval as follows:

a. Collect all the mappings of the same DNB that belong to the current interval or mappings
from different intervals that overlap the corresponding arm/both arms of the selected DNB.

b. Run one-DNB de-duplication. This operation deletes all the collected DNB mappings from the
buffer except the “best” one.

c. Write the “best” mapping into the SAM output stream.

d. Remove the “best” mapping from the buffer and proceed to the next mapping in the current
interval.

e. If the last mapping in the current interval has been processed, remove the mappings
processed for the current interval from the read-ahead buffer.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 25

During de-duplication, the following rules are used to determine the best mapping for a DNB:

1. If several mapping records belong to the same variation interval, leave only the record that has
maximum mapping quality.

2. If several mapping records belong to adjacent variation intervals (same side and strand), leave only
the record that has maximum mapping quality.

3. If there are only two mapping records in the set and their different arms support different intervals,
construct a composite mapping inheriting MAPQ, position in the reference, and reference alignment
from a corresponding mapping record.

4. If there is still more than one mapping record in the input set, select the mapping with highest MAPQ
and remove the other mappings.

 The following additional limitations apply to evidence2sam output:

 The converted evidence support mappings are the mappings that belong only to the regions where
variations were called.

 SAM does not have strong support for overlapping sub-reads (e.g., the negatively sized intra-read
gaps), which are present in Complete Genomics data. To represent overlapping reads, the strongest
base call is put in the SAM mapping record, and the alternative base calls are represented using the
GS/GQ/GC tags of the mapping record.

 When the option to de-duplicate mapping records is not used, evidence2sam reports all mappings as
non-primary mappings.

 The NM tag (edit distance to reference sequence) is not currently produced by map2sam.
 The R2 and Q2 tags (mate sequence and quality scores) can be generated optionally.
 XI:I – an optional tag, contains the number of the evidence interval the mapping comes from.
 XA:I – an optional tag, contains the number of the allele the mapping comes from.

generatemasterVar (beta)
The generatemasterVar tool produces a simple, integrated master variation file (masterVar) to report
the variant calls and annotation information produced by the Complete Genomics assembly process. The
file format is derived heavily from the existing variation file format and can be used with all cgatools
commands anywhere a variation file is expected. This format has the following important features:

 The format includes one line for any given locus of the genome. All lines are in the same format and
contain the same number of fields, although some fields may be blank for certain types of loci. This
allows for easier processing of the data with simple command line tools such as awk or grep.

 The format integrates annotation information from data in other Complete Genomics export files. For
example, loci are annotated with read counts from the evidence files and with copy number calls
from the CNV result files.

 For every locus line, the zygosity field can be used to quickly determine if the locus is fully called on
one, both or none of the alleles. Fully called loci are further classified into haploid, homozygous,
heterozygous reference (where one of the alleles is equal to the reference), and heterozygous
alternate (where neither of the alleles is equal to the reference).

 Loci that contain simple isolated variations (SNP, INS, DEL or SUB) can be easily identified using the
varType field.

 Users can filter the data by removing locus data lines. The regions that correspond to any removed
lines are treated by cgatools as if the locus was no-called on all alleles.

 Users can add extra annotation columns that are appended to every line. cgatools commands that
both consume the format and produce it as output will transfer the additional columns intact.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 26

 The format provides a structured content that can more easily be converted into other standard
variation file formats.

Table 6 summarizes the columns that must always be present in the file.

Table 6: Mandatory Columns

Column Name Description

locusId Integer ID of the locus. When converting a Complete Genomics variant file, all loci will retain the
original IDs. When processing filtered files where regions have been removed, the loci that
correspond to the removed regions are recreated with a locus ID 0 and are considered fully no-
called.

ploidy Number of alleles (same as in the Complete Genomics variant file).

chromosome Chromosome name (same as in the Complete Genomics variant file).

begin Locus start. Zero-based offset of the first base in the locus, the same as in the Complete Genomics
variant file.

end Locus end. Zero-based offset of the first base downstream of the locus, same as in the Complete
Genomics variant file.

zygosity Call completeness and zygosity information. zygosity is assigned one of the following values:
no-call All alleles are partially or fully no-called.
half Diploid locus where one of the alleles is fully called and the other contains no-calls.
hap Haploid, fully called locus.
hom Diploid, homozygous, fully called locus.
het-ref Diploid, heterozygous, fully called locus where one of the alleles is identical to the

reference.
het-alt Diploid, heterozygous, fully called locus where both alleles differ from the

reference.
varType Variation type for simple, isolated variations. varType is assigned one of the following values:

snp, ins, del, or
sub

Fully called or half-called locus that contains only a single isolated
variation.

ref Fully called or half-called locus that contains only reference calls and no
calls and at least one allele is fully called.

complex Locus that contains multiple variations or has no-calls in all alleles. This is
also the value for all loci where the reference itself is ambiguous.

no-ref Locus where the reference genome is N.
PAR-called-in-X Locus on the pseudo-autosomal region of the Y chromosomes in males.

reference Reference sequence. Loci called as homozygous reference and loci that are fully no-called on all
alleles will contain “=” instead of the literal reference sequence.

allele1Seq Sequence of the first allele. May contain “N” (one-base-no-call) and “?” (unknown-length-no-call)
characters, with the same semantics as used in the Complete Genomics variant file. The field is
empty whenever the called variant is a deletion of all bases in the locus. For a given locus, if the
allele in the variation file spans multiple lines, then the sequences for each call corresponding to
that allele are concatenated.

allele2Seq Sequence of the second allele. The value of allele2Seq follows the same rules as allele1Seq. This field
is always blank for haploid loci (whenever the ploidy field contains 1).
The values of allele1Seq and allele2Seq are assigned such that a variation allele always precedes a
pure reference allele, and a fully called allele always precedes any allele that contains no-calls. As a
result, the allele order may differ from the order in the corresponding source variant file.

allele1Score Minimum score of all calls in the first allele of the locus.
allele2Score Minimum score of all calls in the second allele. Blank for haploid loci.
allele1HapLink Integer ID that links the first allele to the alleles of other loci that are known to reside on the same

haplotype.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 27

Column Name Description

allele2HapLink Integer ID that links the second allele to the alleles of other loci that are known to reside on the
same haplotype.

Table 7 describes the annotation information from various sources which can also be included. The
values listed in Table 7’s Source column are described in Table 8.

Table 7: Annotation Columns

Column Name Source Description

xRef Input File Semicolon-separated list of all xRef annotations for all alleles of the locus.
evidenceIntervalId Evidence Integer ID of the interval in the evidence file. Multiple loci may share the

same evidence interval.
allele1ReadCount Evidence Number of reads that support the first allele. A read is included in the

count if it overlaps the locus interval and supports the allele by at least
3 dB more than the other allele or the reference.
For length-preserving variations, at least one base in the read must
overlap the interval to be included in the read count.
For length-changing variations, the read may be counted even if it
overlaps the variation with its intra-read gap.

allele2ReadCount Evidence Number of reads that support the second allele. For homozygous loci,
this number is identical to allele1ReadCount.

referenceAlleleReadCount Evidence Number of reads that support the reference sequence. For loci where
one of the alleles is reference, this number is identical to the read count
of that allele.

totalReadCount Evidence Total number of reads in the evidence file that overlap the interval. Note
that this count also includes reads that do not strongly support one
allele over the other and consequently are not accounted for in
allele1ReadCount or allele2ReadCount. For loci where one of the alleles
contains a no-call, the totalReadCount also includes the reads that
support that no-called allele. The totalReadCount does not include reads
that do not overlap the locus, even if they do overlap the evidence
interval, and, hence, are present in the evidence file.

allele1Gene Gene Semicolon-separated list of all gene annotations for the first allele of the
locus. For every gene annotation, the following fields from the gene file
are concatenated together using colon as separator: geneId, mrnaAcc,
symbol, component, and impact.

allele2Gene Gene Gene annotation list for the second allele, formatted in the same way as
allele1Gene.

pfam Gene Pfam domain information that overlap with the locus.

miRBaseId ncRNA Semicolon-separated list of all ncRNA annotations for this locus.
repeatMasker Repeat Semicolon-separated list of all RepeatMasker records that overlap this

locus. Within every record, the following data is concatenated together
using colon as separator:

 repeat name
 repeat family
 overall divergence percentage (number of bases changed,

deleted or inserted relative to the repeat consensus sequence
per hundred bases)

Mitochondrion loci are not annotated.
segDupOverlap Segdup Number of distinct segmental duplications that overlap this locus.

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 28

Column Name Source Description

relativeCoverage CNV Normalized coverage level for the segment that overlaps the current
locus (for loci that overlap two segments, the data from the CNV
segment with the longer overlap are chosen).

calledPloidy CNV Ploidy of the segment. Only present if the ploidy calls were made during
the assembly (only when the calledPloidy column is present in the
source CNV file).

Table 8: Annotation Data Sources

Source Description

Input
File

Data is copied from the input file. If the input file is the master variations file
(masterVar-[ASM-ID].tsv.bz2), its annotation columns are simply copied to the output. If the input
file is the variation file (var-[ASM-ID].tsv.bz2), the xRef data is re-formatted as described above.

Evidence Data from the Complete Genomics evidence export file. Root directory of the genome package must
be specified when invoking the tool.

Gene Data from the Complete Genomics gene annotation file (gene-ASM.tsv). Root directory of the
genome package must be specified when invoking the tool.

ncRNA Data from the Complete Genomics non-coding RNA annotation file (ncRNA-ASM.tsv). Root directory
of the genome package must be specified when invoking the conversion tool.

Repeat RepeatMasker information. If repeat annotations are required then the RepeatMasker annotation
data file must be specified when invoking the command. The file may be downloaded from the
Complete Genomics website:

 Build 36 — ftp://ftp.completegenomics.com/AnnotationFiles/rmsk36.tsv.gz
 Build 37 — ftp://ftp.completegenomics.com/AnnotationFiles/rmsk37.tsv.gz

The data is derived from the RepeatMasker table available from the UCSC genome browser website.
Segdup Information about segmental duplications. If segmental duplication data is required, then the

location of the segmental duplication data file must be specified when invoking the command. The
files for each reference build are available for download from the Complete Genomics website:

 Build 36 — ftp://ftp.completegenomics.com/AnnotationFiles/segdup36.tsv.gz
 Build 37 — ftp://ftp.completegenomics.com/AnnotationFiles/segdup37.tsv.gz

The data is derived from the segmental duplication table available from the UCSC genome browser
website.

CNV Information about the CNV calls made by the Complete Genomics pipeline for the region that covers
this locus. Root directory of the genome package must be specified when invoking the tool.

In addition to the annotations produced by the conversion tool, the calldiff tool can produce output files
in the master variant format, with the additional columns that contain the results of the comparison for
every locus, and the somatic ranks and scores for the loci of the first file in the pair.

Modifying the masterVar file

When processing the masterVar file with your own tools, it is important to adhere to the following rules
to maintain compatibility with cgatools:

1. Header line TYPE must be preserved as is. It is recommended, but not required, that the other header
values are also preserved.

2. Every locus data line must contain the same set of columns. The column header line (starting with a
“>” character) must be present and must contain the same number of columns as the rest of the file.

3. Order of lines must remain intact. The loci in the file are sorted in the order of the reference.

4. The values of the mandatory columns must not be modified and columns themselves must not be
removed. In particular, loci may not be split or merged.

ftp://ftp.completegenomics.com/AnnotationFiles/rmsk36.tsv.gz�
ftp://ftp.completegenomics.com/AnnotationFiles/rmsk37.tsv.gz�
ftp://ftp.completegenomics.com/AnnotationFiles/segdup36.tsv.gz�
ftp://ftp.completegenomics.com/AnnotationFiles/segdup37.tsv.gz�
http://genome.ucsc.edu/�
http://genome.ucsc.edu/�

cgatools Methods Format Conversion Tools

© Complete Genomics, Inc. 29

Additional Information about the masterVar File

 The allele sequence is a concatenation of all calls from the variation file for the given allele. As a
result, in some complex loci, the information about the exact alignment of the called sequence to the
reference may be lost.

 Certain simple variant calls embedded in more complex loci may not be as easy to identify in the
masterVar file format compared to the variation file. For example, a locus that contains a SNP
opposite a two-base substitution will be classified as “complex” after the conversion.

 cgatools commands that consume the masterVar file as input may produce results that differ
slightly from those produced using the variation file:

 The ordering of the alleles may change, due to the allele ordering rules described in Table 6.
 When using the masterVar file as input to snpdiff, in some rare cases involving multiple variations in

the same locus, the walk algorithm used by the snpdiff tool may result in a no-call, even though it was
possible to resolve the base using the variation file.

 Annotation information in the source files pertains to a particular call line. The association between
the annotation and a particular call is lost in masterVar file. However, in most cases, the association
is obvious.

cgatools Methods Annotation Tools

© Complete Genomics, Inc. 30

Annotation Tools

Most files used as input or output for cgatools are simple tab-delimited files that can be interpreted as
tables. As such, cgatools provides tools that manipulate the files as tables.

join (beta)
The join tool works like a database join to merge the results of two delimited input files. It can be used,
for example, to annotate the variant file with your own set of annotations. For example, suppose you have
the following file:
chromosome begin end region
chr1 13 23 InterestingRegion1
chr2 19 20 InterestingRegion2

You can annotate the variant file from Figure 3 as follows:
cgatools join –-match=chromosome:chromosome \
 --overlap=begin,end:begin,end \
 --select='a.*,b.region' \
 /path/to/var-tsv.bz2 /path/to/annotations.tsv

The result is all the records of the variant file that overlapped with your regions of interest, as shown in
Figure 14:

Figure 14: join Example Results

>
l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

t
o
t
a
l
S
c
o
r
e

h
a
p
L
i
n
k

x
R
e
f

r
e
g
i
o
n

5 2 1 chr1 13 13 ins

A 36

InterestingRegion1
5 2 2 chr1 13 13 ins

A 42

InterestingRegion1

6 2 all chr1 13 22 ref = =

InterestingRegion1
7 2 1 chr1 22 24 del AT

47 1

InterestingRegion1

7 2 2 chr1 22 24 ref AT AT 55 2

InterestingRegion1
16 1 1 chr2 18 20 sub TT CG 102

InterestingRegion2

To accomplish this, the join tool first reads the annotations file (file B) into memory. Then it streams the
variant file (file A); for each record of file A, it finds the records of file B that match the user-selected
columns or that overlap the record. As a consequence of this implementation, file B must fit into memory,
but file A may be arbitrarily large. Additionally, the output records are in the same order as they are
found in file A.

To recap, the limitation of the join tool is:

 File B must fit into memory.

cgatools Methods Annotation Tools

© Complete Genomics, Inc. 31

junctions2events (beta)
Junctions are defined as regions of the genome being sequenced that are not adjacent or in the same
orientation on the reference genome. Structural variation events such as deletions, inversions, and
translocations are represented by one or more junctions. Currently the Complete Genomics SV pipeline
does not attempt to rationalize sets of junctions into such events. Instead, Complete Genomics provides
this functionality in cgatools. The junctions2events tool enables researchers to group related junctions
and annotate each group with information about the structural rearrangement (“event”) that these
junctions represent.

To understand the utility of junctions2events, consider a distal duplication event within the same
chromosome as shown in Figure 15. This distal duplication event generates two junctions detected with
mate pair 1 and mate pair 2.

Figure 15: Distal Duplication Event

In this example, the genomic region represented by the second orange segment of the sequenced genome
is duplicated and inserted into a region upstream of the original copy. Mate pair 1 from the sequenced
genome maps to the reference genome in the expected orientation, but at a distance that is greater than
the expected mate gap size. Thus, Junction A represented by mate pair 1 would have both LeftStrand and
RightStrand as “+” in the junction file. Mate pair 2 from the sequenced genome maps to the reference
genome in an anomalous orientation: the right end maps to an earlier position in the reference genome
than the left end. Thus, Junction B represented by mate pair 2 would have both strand columns as “-”.

When interpreted in isolation, Junction B has the signature of a tandem duplication of the green and
orange sequence. Junction A indicates a deletion of the green sequence. Both junctions seem to indicate
more disruptive events than the duplication that caused them, particularly if the green sequence is long
and contains many genes and the orange sequence is very short. Junction-by-junction interpretation
becomes even more misleading if the duplicated orange sequence is inserted into a different
chromosome such that each junction may seem to indicate a rearrangement of chromosomal arms.

Missing the detection of a true junction and detecting false junctions can lead to misinterpretation of the
underlying event. To limit the chances of misinterpreting the events, junctions2events requires access to
the most complete list of junctions available. However, you can specify the shorter list of junctions of
interest, so an event will be listed only if it contains at least such junction. For example, you can use

cgatools Methods Annotation Tools

© Complete Genomics, Inc. 32

junctiondiff to create the list of putative somatic junctions in a tumor genome, and then interpret these
junctions in the context of all the junctions of the tumor using junctions2events:
cgatools junctions2events –-junctions=somaticJunctionsTumor.tsv \
 --all-junctions=allJunctionsTumor.tsv \
 --repmask-data rmsk36.tsv.gz \
 --gene-data gene36.tsv.gz \
 --reference build36.crr

This approach can also be employed to find the events related to a high-confidence set of junctions in the
context of all junctions.

One can deduce structural variation event types from junction data by generating an undirected graph of
related junctions and then stepping through the following heuristic process:

 Junctions that are close on at least one side are considered connected. The distance threshold is
controlled by the junctions2events max-related-junction-distance parameter.

 Connected components with more than two junctions are considered “complex” events.
 For every other junction, junction2events attempts to find a compatible junction in such a way that

together they may be interpreted as a distal duplication of contiguous sequence. For example, for
junction B in Figure 15, junction2events starts the search from the right position of the junction
upstream, until it encounters the right position of the junction A. In general, it scans in the direction
away from the break indicated by the junction side. The maximum scan distance is controlled by the
max-pairing-distance parameter.
Junctions are considered compatible when their sides can be paired to bound a contiguous piece of
sequence from the inside, similar to the orange sequence in Figure 15, while their remaining sides
bound a small piece of sequence from the outside.

 Pairs of compatible junctions are considered “inversion” events when the junctions change strand,
and the sequence chunk bounded from the inside overlaps to a large degree with the sequence chunk
bounded from the outside (one can think of this as the sequence being copied, inverted, and pasted
over its old location). For the cases with no significant overlap, the event is classified as “distal-
duplication”.

 Junction pairs that are connected, but not compatible in the sense described above, are considered
“complex” events.

 For isolated junctions, junction2events attempts to find a nearby mobile element that may have
caused the junction by copying the adjacent sequence. The search distance is controlled by the max-
distance-to-m-e parameter, and the list of mobile elements that are known to copy an adjacent
sequence may be specified using the mobile-element-names parameter.

 Remaining isolated junctions that connect sequence on different chromosomes are not classified any
further and are listed as “interchromosomal” events.

 Finally, the isolated junctions that have both sides on the same chromosome are interpreted based
on the strands of the junction sides: Junctions with +/+ sides are classified as deletions, -/- as tandem
duplications, and strand-inconsistent junctions as probable inversions. In all cases the subject
sequence of the event lies between the junction side positions.

In addition to classifying the events by the type, junctions2events uses the list of known genes to
annotate the events. Every event (including the “complex” events) is annotated with the list of all
potentially disrupted genes; these are the genes that overlap at least one of the junction side positions for
any of the junctions that were grouped into the event.

junctions2events generates the list of possible gene fusions for an event as follows:
 When a junction appears to connect two different genes (for example, A and B), it is considered a

possible gene fusion (described in the file as “A/B”).

cgatools Methods Annotation Tools

© Complete Genomics, Inc. 33

 When a junction connects the region upstream of gene C to an intact gene D in a strand-consistent
manner, it is annotated using “TSS-UPSTREAM[C]/D” notation; the size of the upstream region that
triggers this annotation is set using the regulatory-region-length parameter.

 For the events that may indicate a copy number change of a stretch of sequence (that is, “deletion”,
“tandem-duplication”, and “distal-duplication” events), all the genes that are completely contained in
the affected sequence are included.

junctions2events produces two files. The first file contains the list of the original junctions of interest
annotated with the event type, the list of related junctions, and the unique ID of the event. The second file
contains the list of the events and the corresponding gene-related annotations.

junctions2events requires two external data files. The first file is the list of repeat annotations, described
in “generatemasterVar (beta)”. The second file is the list of the known gene locations in the genome,
derived from the NCBI RefSeq alignment data and reformatted to better fit the cgatools conventions.
These files for each of the reference builds supported by Complete Genomics may be downloaded from
ftp://ftp.completegenomics.com/AnnotationFiles/.

ftp://ftp.completegenomics.com/AnnotationFiles/�

	cgatools Methods
	Table of Contents
	Preface
	Conventions
	CGI Data
	References

	Reference Tools
	CRR File Format
	FASTA Reference Sequences
	fasta2ccr
	crr2fasta
	decodecrr
	listcrr

	Genome Comparison Tools
	A Note on Conventions
	The Problem of Genome Comparison
	Problems Not Solved by Variant File Format

	Genome Comparison with cgatools
	snpdiff
	calldiff
	calldiff for scoring somatic variations (beta)
	Many-Genome Comparison: listvariants (beta)
	Many-Genome Comparison: testvariants (beta)
	junctiondiff (beta)

	Format Conversion Tools
	map2sam
	Representation of the Complete Genomics data in the SAM output
	Rules to Set the "not primary" Flag (0x0100)
	Combining Mapping Records in SAM

	evidence2sam (beta)
	generatemasterVar (beta)
	Modifying the masterVar file
	Additional Information about the masterVar File

	Annotation Tools
	join (beta)
	junctions2events (beta)

