
CGA™ Tools User Guide
Software Version 1.7.1

CGA Tools, cPAL and DNB are trademarks of Complete Genomics, Inc. in the US and certain other countries. All other trademarks are the
property of their respective owners.

Copyright © 2011-2012, Complete Genomics, Incorporated. All rights reserved. UG_CTA-1.7-01

 Table of Contents

© Complete Genomics, Inc. CGA Tools User Guide — ii

Table of Contents
Preface ... 1

Conventions .. 1
Complete Genomics Data and Data Structure Requirements ... 1

Data Structure Requirements .. 1
CGA Tools Documents .. 3
References ... 3

Installing CGA™ Tools .. 5
Overview and Requirements ... 5

Install Processes in a Nutshell ... 5
User Requirements ... 6
System Requirements.. 6
Software Requirements to Build CGA Tools from Source Code .. 6

Installing CGA Tools from a Binary Distribution .. 6
Mac OS X: Installing CGA Tools from a Binary Distribution ... 6
Linux: Installing CGA Tools from a Binary Distribution ... 8

Installing CGA Tools in Galaxy .. 9
Installing CGA Tools from Source Code .. 9

Preparing the Environment .. 9
Installing CMake .. 10
Installing Boost ... 11
Downloading and Recompiling the CGA Tools Source Code .. 12

Obtaining a Reference Human Genome for Use with CGA Tools .. 13
Downloading the CRR File ... 13
Building the CRR File from FASTA Files .. 13
Verifying CRR File Content .. 14

Obtaining Ancillary Files for Use with CGA Tools .. 15

Genome Comparison Tools ... 17
The Problem of Genome Comparison .. 17
Problems Not Solved by Variant File Format.. 18
Genome Comparison with CGA Tools ... 20

snpdiff .. 21
calldiff .. 30
listvariants (beta) ... 48
testvariants (beta) ... 51
junctiondiff (beta) .. 54

SAM Conversion Tools .. 57
evidence2sam (beta) .. 58

VCF Conversion Tool ... 60
mkvcf (beta) .. 60

Master Variation File Format Conversion Tool ... 65
generatemasterVar (beta) .. 65

Filtering and Annotation Tools ... 69
varfilter (beta) ... 70

 Table of Contents

© Complete Genomics, Inc. CGA Tools User Guide — iii

join (beta) .. 72
junctions2events (beta) .. 76

Reference Tools .. 84
CRR File Format ... 84
FASTA Reference Sequences .. 84

fasta2ccr ... 85
crr2fasta ... 87
decodecrr ... 88
listcrr .. 89

Appendix .. 92
snpdiff Algorithm ... 92
calldiff Algorithm .. 92
listvariants Algorithm ... 102
testvariants Algorithm .. 102
junctiondiff Algorithm ... 103
Representation of the Complete Genomics Data in SAM Output Format ... 104
junctions2events Algorithm ... 108
Sequence Coordinate System ... 110
mkvcf Translation Details .. 110

masterVar Conversion .. 110
CNV Conversion .. 112
MEI Conversion ... 112
SV Conversion .. 112

Preface Conventions

© Complete Genomics, Inc. CGA Tools User Guide — 1

Preface

Complete Genomics Analysis Tools (CGA™ Tools) is an open source project to provide tools for
downstream analysis of Complete Genomics data. This document describes how to install and use the
tools, and provides information on the underlying algorithms.

Conventions
This document uses the following notational conventions:

Notation Description
italic A field name from a data file. For example, the varType field in the variations data file

indicates the type of variation identified between the assembled genome and the
reference genome.

Also used to indicate the values found in data files. For example, ChromosomeName
indicates that the value found in the data file is the name of a given chromosome.

bold_italic A file name from the data package. For example, each package contains the file
manifest.all.

42$ echo hello world Indicates that the reader type “echo hello world” (without quotes) at the command
prompt. The steps are numbered (bold number before the prompt) sequentially
through the document

Complete Genomics Data and Data Structure Requirements
Complete Genomics, Inc. delivers complete genome sequencing data to customers and collaborators. The
data include sequence reads, their mappings to a reference human genome, and variations detected
against the reference human genome. This document describes tools developed to analyze this data.

Data Structure Requirements
Several of the CGA Tools utilities, such as evidence2sam, calldiff, and generatemastervar, require input
files to be located in the directory hierarchy in which the data package was originally delivered by
Complete Genomics. To ensure that CGA Tools utilities function properly, you need to maintain the
original directory hierarchy for each genome that is to be analyzed. Figure 1 and Figure 2 show the
standard top level and ASM directory hierarchies for genomes sequenced using Complete Genomics
Standard Sequencing Service.

Preface Conventions

© Complete Genomics, Inc. CGA Tools User Guide — 2

Figure 1: Top-Level Data Structure

Figure 2: Standard ASM Directory Hierarchy

Preface References

© Complete Genomics, Inc. CGA Tools User Guide — 3

CGA Tools Documents
This document is part of a set that describe aspects of CGA Tools and the Complete Genomics human
genome data. These documents are available from the Complete Genomics website (except where noted):

 Complete Genomics Data File Formats — The organization and content of the format used to deliver
Complete Genomics human genome data, available for the standard sequencing service and the
cancer sequencing service.

 Analysis Pipeline Release Notes — New features and enhancements listed by release.
 Introduction to Complete Genomics’ Sequencing Technology — A description of Complete Genomics

Sequencing Technology.
 Complete Genomics Science Article — An article describing the methodology and performance of the

Complete Genomics sequencing platform. (Science 327 (5961), 78. [DOI:
10.1126/science.1181498]). This document is available on the Science web site:
www.sciencemag.org/cgi/content/abstract/1181498?ijkey=2cSK/YvTtuDSU&keytype=ref&siteid=sci

We recommend you read the Complete Genomics Service FAQ as background for this document.

 Complete Genomics Managing Data FAQ — Answers to questions about preparing to receive the hard
drives of data.

 Complete Genomics Small Variants FAQ — Answers to frequently asked questions about Complete
Genomics variation data.

 Complete Genomics CNV, SV, and MEI FAQ — Answers to frequently asked questions about Complete
Genomics variation data.

 Complete Genomics Small Variant Score Calibration Methods — Methods used to calibrate Complete
Genomics small variant quality scores to absolute error rate. Error calibration is based on replicate
experiments conducted by Complete Genomics at various levels of coverage. These methods and the
related calibration files are used by the CGA Tools mkvcf (when producing calibrated scores) and
calldiff (with the SomaticOutput) tools.

References
CGA Tools requires users to be familiar with Unix-like commands. Here are some basic resources to get
you started or enhance your skills:

 A Brief UNIX Shell Comparison:
http://www.thewellroundedgeek.com/2007/04/brief-unix-shell-comparison.html

 An alphabetical list of basic Unix/Linux commands with thorough examples:
http://www.math.utah.edu/lab/unix/unix-commands.html

 A complete list of Linux commands and their options: http://www.oreillynet.com/linux/cmd/
 Python interpreter: This open source programming language gives users of Complete Genomics data

a powerful analysis platform. You won’t need to interact with Python for this installation, but you
may find that you want to use it to expand your data analysis capabilities. Here’s where to get started
with Python: http://docs.python.org/tutorial/.

Recompiling CGA Tools requires users to have installed several Unix utilities. See the resources below for
downloads and more information.

 CMake: An extensible, open-source system that manages the build process in an operating system
and in a compiler-independent manner. Here’s an overview of the utility and its operation:
http://www.cmake.org/Wiki/CMake.

 Boost C++ libraries: This freely downloaded, peer-reviewed set of C++ libraries provides the core
C++ functionality on which the CGA Tools source code is built. You will not need to interact with

http://www.completegenomics.com/documents/DataFileFormats-100357139.html�
http://www.completegenomics.com/documents/ReleaseNotes-100358389.html�
http://media.completegenomics.com/documents/Technology+White+Paper.pdf�
http://www.sciencemag.org/cgi/content/abstract/1181498?ijkey=2cSK/YvTtuDSU&keytype=ref&siteid=sci�
http://media.completegenomics.com/documents/Complete_Genomics_Service_FAQ.pdf�
http://www.completegenomics.com/documents/Getting-Started-FAQ-100297759.html�
http://www.completegenomics.com/documents/Variation-FAQ-100296234.html�
http://www.completegenomics.com/documents/CNV--SV-FAQ-108164729.html�
http://media.completegenomics.com/documents/CalibrationMethods.pdf�
http://media.completegenomics.com/documents/CalibrationMethods.pdf�
http://www.thewellroundedgeek.com/2007/04/brief-unix-shell-comparison.html�
http://www.math.utah.edu/lab/unix/unix-commands.html�
http://www.oreillynet.com/linux/cmd/�
http://docs.python.org/tutorial/�
http://www.cmake.org/Wiki/CMake�

Preface References

© Complete Genomics, Inc. CGA Tools User Guide — 4

Boost other than to make sure it is installed and available during the CGA Tools installation process.
Here’s where to find out more: http://www.boost.org/users/faq.html.
For detailed documentation and installation instructions, see:

www.boost.org/doc/libs/1_46_1/more/getting_started/unix-variants.html

Complete Genomics provides the following Baseline data:

 Sample Sequence Data: Complete Genomics release of public genome sequences:
www.completegenomics.com/sequence-data/download-data/.

 Baseline Genome Set — The data used to generate the baseline genome set is comprised of 52
unrelated genomes from the Complete Genomics Diversity Panel. The following summaries are
available of this data:

 CNV Baseline Genome Dataset: Summary of the underlying data and normalization constants
for each of the CNV baseline genomes. The accompanying Data Format Description document
provides the identifiers for each genome in the CNV baseline set and describes the data file
format for the CNV baseline genome composite file. Available from the Complete Genomics
FTP site. [ftp://ftp2.completegenomics.com/Baseline_Genome_Set/CNVBaseline]

 SV Baseline Genome Dataset: Summary of the detected junctions and their frequencies
across the SV baseline set. The accompanying Data Format Description document provides
the identifiers for each genome in the SV baseline set and describes the data file format for
the SV baseline genome composite file. Available from the Complete Genomics FTP site.
[ftp://ftp2.completegenomics.com/Baseline_Genome_Set/SVBaseline]

CGA Tools draw on the following industry standards and publicly available data:

 SAM — The Sequence Alignment/Map format is a generic format for storing large nucleotide
sequence alignments. This CGA Tools description is based on the SAM Format Specification
“Sequence Alignment/Map (SAM) Format,” Version 0.1.2-draft (August 20, 2009).
[http://samtools.sourceforge.net/SAM1.pdf]

 NCBI RefSeq alignment data — Reference assembly and alignment data.
[ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/mapview/seq_gene.md.gz]

 Reference Sequence (RefSeq) Information — Functional impact of variants in the coding regions of
genes is determined using RefSeq annotation data. Refer to the following sources:

 RefSeq — Database of reference sequences annotations of DNA.
[www.ncbi.nlm.nih.gov/refseq/]

 Release Notes — information on a given annotation build.
[www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html]

 RefSeq alignment data per build — Builds 36.3 and 37.2 are the builds currently used by
Complete Genomics.

Build 36.3 ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.36.3/mapview/seq_gene.md.gz

Build 37.2

Many of the CGA Tools are packaged in a Galaxy tool repository and can be installed directly into a Galaxy
instance for genome sequencing data analysis:

ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.37.2/mapview/seq_gene.md.gz

 Galaxy Project — an open, web-based platform for data intensive biomedical research.

http://www.boost.org/users/faq.html�
http://www.boost.org/doc/libs/1_46_1/more/getting_started/unix-variants.html�
http://www.completegenomics.com/sequence-data/download-data/�
ftp://ftp2.completegenomics.com/Baseline_Genome_Set/CNVBaseline�
ftp://ftp2.completegenomics.com/Baseline_Genome_Set/SVBaseline�
http://samtools.sourceforge.net/SAM1.pdf�
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/mapview/seq_gene.md.gz�
http://www.ncbi.nlm.nih.gov/refseq/�
http://www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html�
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.36.3/mapview/seq_gene.md.gz�
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ARCHIVE/BUILD.37.2/mapview/seq_gene.md.gz�
http://galaxyproject.org/�

Installing CGA™ Tools Overview and Requirements

© Complete Genomics, Inc. CGA Tools User Guide — 5

Installing CGA™ Tools

Overview and Requirements
CGA Tools is an open source project to provide tools for downstream analysis of Complete Genomics data.
The CGA Tools source code, as well as precompiled binaries for Linux and Mac OS X, are available from
SourceForge. The source code can be compiled and run on Linux, Unix, or Mac OS X systems. CGA Tools
binaries are also available on the Galaxy platform though the Galaxy main tool shed.

Install Processes in a Nutshell

Install CGA Tools from a Binary Distribution
You can install CGA Tools software on 64-bit Linux or Mac OS X systems from pre-compiled binary
distributions provided by Complete Genomics. This document provides detailed instructions for these
high-level steps:

1. Install CGA Tools from a Binary Distribution: Mac OS X or Linux.

2. Obtain a copy of the reference human genome formatted for use with CGA Tools.

3. Obtain additional source files for use with CGA Tools.

Install CGA Tools within a Galaxy Environment
Alternatively, you can install the Linux or Mac OS X versions of CGA Tools within a Galaxy environment
running on a local computer or a dedicated server. The process includes these high-level steps:

1. Install CGA Tools from the Galaxy main tool shed.

2. Download human reference and additional auxiliary files for use with CGA Tools.

Building CGA Tools from Source Code
You can also build CGA Tools from source code. This document provides detailed instructions for these
high-level steps:

1. Prepare your environment.

2. Verify that you have the required third-party software.

3. Build and install CMake.

4. Build and install Boost.

5. Use CMake to build and install CGA Tools.

6. Obtain a copy of the reference human genome formatted for use with CGA Tools.

7. Obtain additional source files for use with CGA Tools

http://cgatools.sourceforge.net/�

Installing CGA™ Tools Mac OS X: Installing CGA Tools from a Binary Distribution

© Complete Genomics, Inc. CGA Tools User Guide — 6

User Requirements
 Command-line Unix skills

System Requirements
 CentOS 5.1 (64-bit) Linux or equivalent.

This package works on 32-bit or 64-bit Linux and Unix-like systems, including Mac OS X (via the
terminal program). However, Complete Genomics has formally tested only the CentOS 64-bit
environment. It has not been tested on Microsoft Windows.

 8 GB RAM available.
Note that some of the CGA Tools commands, such as join, require more memory proportionate to the
size of the input file.

 Disk usage proportional to the data.
Typically, for a standard coverage genomes, you will need 30-50 GB disk space per genome when
working with Complete Genomics variation and evidence data and reference data. If you also need to
use the reads and initial mappings, your Complete Genomics data may be 300 GB or more per
standard coverage genome. Depending on what you intend to do with the data, you will need even
more disk space than this: for example, if you intend to convert the initial mapping data from a
standard coverage genome to SAM and BAM format, you will need more than 2 TB of space, some of
which is taken up by intermediate files (the SAM files) that can be deleted after the conversion.

Software Requirements to Build CGA Tools from Source Code
 GCC C++ compiler, version 4.1.2 or later
 CMake version 2.8.1 or later
 Boost version 1.46.1
 Python version 2.4.3 or later (only required if running test cases)
 Doxygen version 1.6.2 or later (only required if generating API docs)
Note: You may have older versions of some of these software programs installed, or they may be installed
in a manner incompatible for the CGA Tools build process. If you encounter error messages during the
CGA Tools build process, we recommend you download and install fresh instances of the recommended
CMake and Boost versions. Consider installing them in a private directory separate from the other
version on your computer.

Installing CGA Tools from a Binary Distribution
CGA Tools is available as a pre-compiled binary distribution for Mac OS X and 64-bit Linux. Instructions
for preparing and installing the binary distribution are included for each platform:

 Mac OS X: Installing CGA Tools from a Binary Distribution
 Linux: Installing CGA Tools from a Binary Distribution

Mac OS X: Installing CGA Tools from a Binary Distribution
1. Create a directory structure.

We recommend the following directory structure to support the installation and use of CGA Tools.
This structure assumes your username is “complete” and all Complete Genomics data and
applications are installed by user “complete”.

Installing CGA™ Tools Mac OS X: Installing CGA Tools from a Binary Distribution

© Complete Genomics, Inc. CGA Tools User Guide — 7

Content Directory Structure
CGA Tools executable
Note: If this directory does not
already exist, it requires root
privileges to create.

/usr/local/bin

CGA Tools documentation /Users/complete/cgatools_docs

Your Complete Genomics
human genome data files

/Users/complete/data

Reference human genome
sequence files

/Users/complete/data/ref

The installation instructions assume this directory structure. If you choose to create a variation on
this structure, make sure to adapt the installation instructions below to your structure.

2. Validate the system path.

The default system $PATH includes /usr/local/bin. If you installed in an alternate location, be sure
the directory containing the CGA Tools executable is in your $PATH. Consult your shell
documentation for how to set the $PATH.

3. Download the binary.

The current CGA Tools binary distribution is available from SourceForge
(http://cgatools.sourceforge.net). The file is named as follows, where the X’s are replaced by the
current version number:

 cgatools-X.X.X.X-MacOSX_binary-x86_64.tar.gz

4. Untar the tarball by double clicking the filename in the Finder, or use the following command:
1$ tar -xzf cgatools-X.X.X.X-MacOSX_binary-x86_64.tar.gz

This command creates a directory including CGA Tools executable and documents:

 Executable: /bin/cgatools

 Documentation: /share/cgatools-X.X.X/cgatools-X.X.X-docs/index.html

5. Copy the executable into your binary directory:
2$ sudo cp cgatools /usr/local/bin

6. Copy the documentation into your documentation directory:
3$ cp –r cgatools-X.X.X.X-MacOSX_binary-x86_64/share/cgatools-X.X.X/cgatools-
X.X.X-docs/* /Users/complete/cgatools_docs

7. Make sure the new commands are available to the shell.
4$ hash –r

8. Test the install:
5$ cgatools

If CGA Tools returns with the version number (for example “1.5.0.0”) and a page of help notes, you
have successfully installed CGA Tools.

At this point you can skip ahead to “Obtaining a Reference Human Genome for Use with CGA Tools.”

http://cgatools.sourceforge.net/�

Installing CGA™ Tools Linux: Installing CGA Tools from a Binary Distribution

© Complete Genomics, Inc. CGA Tools User Guide — 8

Linux: Installing CGA Tools from a Binary Distribution
1. Create a directory structure.

We recommend the following directory structure to support the installation and use of CGA Tools.
This structure assumes your username is “complete” and all Complete Genomics data and
applications are installed by user “complete”.

Content Directory Structure
Tar files and other intermediate files that
are not needed after the CGA Tools
installation is complete

/home/complete/src

CGA Tools executable /home/complete/local/bin

CGA Tools documentation /home/complete/local/share/cgatools-X.X.X/doc

Your Complete Genomics human genome
data files

/home/complete/data

Reference human genome sequence files /home/complete/data/ref

The installation instructions assume this directory structure. If you choose to create a variation on
this structure, make sure to adapt the installation instructions below to your structure.

2. Be sure that the directory containing the CGA Tools executable is in your $PATH.

Consult your shell documentation for how to set the $PATH in your .tcshrc or .bashrc file.

3. The current CGA Tools binary distribution is available from SourceForge
(http://cgatools.sourceforge.net). The files are named as follows, where the X’s are replaced by the
current version number:
cgatools-X.X.X.X-linux_binary-x86_64.tar.gz

Download the CGA Tools binary distribution into:
/home/complete/src

4. Untar the tarball:
1$ tar -xzf cgatools-X.X.X.X-linux_binary-x86_64.tar.gz

This command creates a directory including CGA Tools executable and documents:

 Executable: /bin/cgatools

 Documentation: /share/cgatools-X.X.X/cgatools-X.X.X-docs/index.html

5. Copy the executable into your binary directory:
2$ cp cgatools-X.X.X.X-linux_binary-x86_64/bin/cgatools /home/complete/bin

If you are installing CGA Tools into a Linux system directory which requires sudo (that is, root
privileges) you will need to enter:
2$ sudo cp cgatools-X.X.X.X-linux-x86_64/bin/cgatools /usr/local/bin

6. Copy the documentation into your documentation directory:
3$ cp cgatools-X.X.X.X-linux_binary-x86_64/share/cgatools-X.X.X/cgatools-X.X.X-
docs/* /home/complete/local/share/cgatools-X.X.X/doc

7. Make sure the new commands are available to the shell.

For C-shell (csh, tcsh):
4$ rehash

http://cgatools.sourceforge.net/�

Installing CGA™ Tools Installing CGA Tools in Galaxy

© Complete Genomics, Inc. CGA Tools User Guide — 9

For Bash or Bourne shell:
4$ hash –r

8. Test the install:
5$ cgatools

If CGA Tools returns with the version number (for example “1.5.0.0”) and a page of help notes, you
have successfully installed CGA Tools.

At this point you can skip ahead to “Obtaining a Reference Human Genome for Use with CGA Tools”.

Installing CGA Tools in Galaxy
CGA Tools is packaged as repositories for installation within a Galaxy instance running on a local
computer or a dedicated server. These repositories contain instructions for automated and manual
installation of the tools and instructions for the download and installation of reference genome files.

You can use Galaxy’s automatic installation to install the CGA Tools repository into your Galaxy instance:

 Log into Galaxy using an account with administrator privileges.
 Follow the instructions provided in the CGA Tools repository or in the Galaxy wiki topic “Installing

Galaxy tool shed repository tools into a local Galaxy instance”.
The CGA Tools repositories available in the Galaxy main tool shed are as follows:

 Linux installations of Galaxy: cg_cgatools_linux
 Max OS X installations of Galaxy: cg_cgatools_mac_osx
After you have installed the CGA Tools repository, you are ready to download a reference human genome
and additional auxiliary files for use with CGA Tools. Follow the instructions provided in the CGA Tools
repository.

The CGA Tools distribution for Galaxy includes core tools such as listvariants, testvariants, calldiff,
snpdiff, junctiondiff, join, and varfilter. Updates to the repositories are published independently of
CGA Tools updates and include the latest version of CGA Tools available at the time of the repository
update.

Installing CGA Tools from Source Code
CGA Tools is available as source code that you build in your own Linux environment.

It is recommended that Mac OS X users install from the binary. If you find it is necessary to install
CGA Tools from the source, please email support@completegenomics.com for assistance.

Preparing the Environment

Installing CMake

Installing Boost

Preparing the Environment

Downloading and Recompiling the CGA Tools Source Code

1. Create a directory structure.

We recommend the following directory structure to support the installation, build, and use of CGA
Tools. This structure assumes your username is “complete” and all Complete Genomics data and
applications are installed by user “complete”.

http://wiki.galaxyproject.org/InstallingRepositoriesToGalaxy%23Installing_Galaxy_tool_shed_repository_tools_into_a_local_Galaxy_instance�
http://wiki.galaxyproject.org/InstallingRepositoriesToGalaxy%23Installing_Galaxy_tool_shed_repository_tools_into_a_local_Galaxy_instance�
mailto:support@completegenomics.com�

Installing CGA™ Tools Installing CGA Tools from Source Code

© Complete Genomics, Inc. CGA Tools User Guide — 10

Content Directory Structure
Tar files and other intermediate files that
are not needed after the CGA Tools
installation is complete

/home/complete/src

CGA Tools executable
(and commands used by CGA Tools build
process, including CMake)

/home/complete/local/bin

CGA Tools documentation /home/complete/local/share/cgatools-X.X.X/doc

Your Complete Genomics human genome
data files

/home/complete/data

Reference human genome sequence files /home/complete/data/ref

The installation instructions assume this directory structure. If you choose to create a variation on
this structure, make sure to adapt the installation instructions below to your structure.

2. Be sure that the directory containing the CGA Tools executable is in your $PATH.

Consult your shell documentation for how to set the $PATH in your .tcshrc or .bashrc file.

Installing CMake
If you already have a correct version of CMake installed on your system, make sure the command is in
your $PATH and skip to the next section “Installing Boost.”

Note: Precompiled binaries are available for CMake. If you choose to use a CMake binary as opposed to
build from source, make sure its machine architecture is the same as used for Boost. For example, 64-bit
CMake should only be used with 64-bit Boost.

To build and install CMake from source:

1. Open a Linux/Unix command shell.

2. Download the CMake distribution into /home/complete/src

http://www.cmake.org/cmake/resources/software.html

3. Change to the download directory.
1$ cd /home/complete/src

4. Unpack the tarball:
2$ tar -xvf cmake-2.8.1.tar.gz

This creates a cmake-2.8.1 subdirectory.

5. Change to the CMake directory.
3$ cd cmake-2.8.1

6. Configure the software, specifying the final installation target:
4$./bootstrap --prefix=/home/complete/local

Resolve any errors, such as not having GNU C Compiler Collection installed. See “Software
Requirements.”

7. Build the software.
5$ gmake

This takes a few minutes. Resolve any errors.

8. Install the software.
6$ make install

http://www.cmake.org/cmake/resources/software.html�

Installing CGA™ Tools Installing CGA Tools from Source Code

© Complete Genomics, Inc. CGA Tools User Guide — 11

Alternatively, if you are installing CMake into a system directory which requires sudo (that is, root
privileges) you will need to type:
6$ sudo make install

9. Make sure the new commands are available to the shell.

For C-shell (csh, tcsh):
7$ rehash

For Bash or Bourne shell:
7$ hash -r

10. Test the installation.
8$ cmake –-help

If the cmake command prints the correct version number and a page of help notes, you have
successfully installed CMake and your path variable is set correctly.

Installing Boost
To build and install Boost from source:

1. Download the Boost distribution into /home/complete/src.

http://sourceforge.net/projects/boost/files/boost

2. Change to the download directory.
9$ cd /home/complete/src

3. Unpack the tarball:
10$ tar -xvf boost_1_46_1.tgz

This will take several minutes. This creates a boost_1_46_1 subdirectory.

4. Change to the Boost directory:
11$ cd boost_1_46_1

5. Configure the software, specifying the final installation target:
12$./bootstrap.sh --prefix=/home/complete/local

6. Now build the software:
13$./bjam install

Alternatively, if you are installing CMake into a system directory which requires sudo (that is, root
privileges) you will need to type:
13$ sudo ./bjam install

This step will take a long time (perhaps an hour). You will see many libboost* files appear in
/home/complete/local/lib and many *.hpp files in /home/complete/local/include.

It is not uncommon to see some errors in the Boost install.

http://sourceforge.net/projects/boost/files/boost�

Installing CGA™ Tools Installing CGA Tools from Source Code

© Complete Genomics, Inc. CGA Tools User Guide — 12

Downloading and Recompiling the CGA Tools Source Code
To build and install CGA Tools:

1. Download the CGA Tools distribution into /home/complete/src.

The CGA Tools distribution has a name such as cgatools-X.X.X.X-source.tar.gz where the X’s
are replaced by the current version number. It is available here:

http://sourceforge.net/projects/cgatools/files/

2. Change to the download directory.
14$ cd /home/complete/src

3. Unpack the tarball:
15$ tar -xvf cgatools-X.X.X.X-source.tar.gz

4. Change to the cgatools-X.X.X.X-source directory:
16$ cd cgatools-X.X.X.X-source

5. Create an empty directory in which to build CGA Tools (build for example).
17$ mkdir build

6. Change to the build directory:
18$ cd build

7. Configure CGA Tools.

You can type this next command on one line or use \ (backslash) to split it onto multiple lines, as
shown here.
19$ cmake -DBOOST_ROOT=/home/complete/local \
-DCMAKE_INSTALL_PREFIX=/home/complete/local/ \
-DCMAKE_BUILD_TYPE=Release \
/home/complete/src/cgatools-X.X.X.X-source

where the DBOOST_ROOT flag points to the final installation target for Boost.

8. Compile CGA Tools.
20$ make -j8

9. Tests CGA Tools.

This step uses Python to run the 75 CGA Tools test cases.
21$ ctest -j8

If any of the tests fail, investigate the failure before proceeding to the next step.

10. Install CGA Tools.
22$ make -j8 install

Alternatively, if you are installing CGA Tools into a system directory which requires sudo (that is,
root privileges) you will need to type:
22$ sudo make -j8 install

11. Make sure the new commands are available to the shell.

For C-shell (csh, tcsh):
23$ rehash

http://sourceforge.net/projects/cgatools/files/�

Installing CGA™ Tools Obtaining a Reference Human Genome for Use with CGA Tools

© Complete Genomics, Inc. CGA Tools User Guide — 13

For Bash or Bourne shell:
23$ hash -r

12. Test the install:
24$ cgatools

If CGA Tools returns with the version number (for example “1.1.0.0”) and a page of help notes, you
have successfully installed CGA Tools.

If you are ultimately unable to install CGA Tools and are warned that there are problems with the
Boost libraries, you may need to consult a system administrator for help.

13. Locate the documentation for CGA Tools:
/home/complete/local/share/cgatools-X.X.X/doc/index.html

Obtaining a Reference Human Genome for Use with CGA Tools
Complete Genomics supports two references. The first, which we refer to as “build 36,” consists of the
assembled nuclear chromosomes from NCBI build 36 (not unplaced or alternate loci) plus Yoruban
mitochondrion NC_001807.4. This assembly is also known as UCSC hg18. The second reference, which we
refer to as “build 37,” consists of the assembled nuclear chromosomes from GRCh37 (not unplaced or
alternate loci), plus the Cambridge Reference Sequence for the mitochondrion (NC_012920.1). This
assembly (though with an alternate mitochondrial sequence) is also known as UCSC hg19.

CGA Tools uses a compact representation of the human genome in a specialized CRR (Compact Randomly
accessible Reference) format. Customers select either build36 or build37 as the reference assembly for
the samples they submit to Complete Genomics, and must use the appropriate CRR file (either
build36.crr or build37.crr) when analyzing their genome data using CGA Tools.

There are two ways to obtain the CRR file associated with your build.

1. We recommend that you download the relevant file from the Complete Genomics FTP site.

2. Alternatively, you can Building the CRR File from FASTA Files that you download from the Complete
Genomics FTP site.

In each case, you will want to verify the content of the file, as described in “Verifying CRR File Content.”

Downloading the CRR File
1. Download the CRR files into:

Linux: /home/complete/data/ref
Mac OS X: /Users/complete/data/ref

The CRR files are available here:

ftp://ftp.completegenomics.com/ReferenceFiles/build36.crr

ftp://ftp.completegenomics.com/ReferenceFiles/build37.crr

Next, verify the CRR file content, as described in “Verifying CRR File Content.”

Building the CRR File from FASTA Files
Important: Complete Genomics “build37” consists of the assembled nuclear chromosomes from GRCh37
(not unplaced or alternate loci), plus the Cambridge Reference Sequence for the mitochondrion
(NC_012920.1). This assembly (though with an alternate mitochondrial sequence) is also known as UCSC
hg19. Customers who build the CRR files as described below must use the correct mitochondrial
sequence. CRR files generated using the UCSC hg19 FASTA files are incompatible with CGA Tools because
they contain a different mitochondrial sequence. Compatible FASTA files are available from Complete
Genomics, as described below.

ftp://ftp.completegenomics.com/ReferenceFiles/build36.crr�
ftp://ftp.completegenomics.com/ReferenceFiles/build37.crr�

Installing CGA™ Tools Obtaining a Reference Human Genome for Use with CGA Tools

© Complete Genomics, Inc. CGA Tools User Guide — 14

Generate the CRR files using the CGA Tools fasta2ccr command:

1. Download the FASTA files into:
Linux: /home/complete/src

Mac OS X: /Users/complete/data/ref/temp

The FASTA sequences are available here:

ftp://ftp.completegenomics.com/ReferenceFiles/build36.fa.bz2

ftp://ftp.completegenomics.com/ReferenceFiles/build37.fa.bz2

2. Change to the download directory.
Linux $ $ cd /home/complete/src
Mac OS X $ $ cd /Users/complete/data/ref/temp

3. Perform the format conversion, making the CRR file. For example:
$ cgatools fasta2crr --input build36.fa.bz2 --output build36.crr

Next, verify the CCR file content, as described in “Verifying CRR File Content.”

Verifying CRR File Content
1. List the contents of the CRR file using the CGA Tools listcrr command. For example:

$ cgatools listcrr --reference build36.crr

For build 36 CRR files, the output should be identical to the following:
ChromosomeId Chromosome Length Circular Md5
 0 chr1 247249719 false 9ebc6df9496613f373e73396d5b3b6b6
 1 chr2 242951149 false b12c7373e3882120332983be99aeb18d
 2 chr3 199501827 false 0e48ed7f305877f66e6fd4addbae2b9a
 3 chr4 191273063 false cf37020337904229dca8401907b626c2
 4 chr5 180857866 false 031c851664e31b2c17337fd6f9004858
 5 chr6 170899992 false bfe8005c536131276d448ead33f1b583
 6 chr7 158821424 false 74239c5ceee3b28f0038123d958114cb
 7 chr8 146274826 false 1eb00fe1ce26ce6701d2cd75c35b5ccb
 8 chr9 140273252 false ea244473e525dde0393d353ef94f974b
 9 chr10 135374737 false 4ca41bf2d7d33578d2cd7ee9411e1533
 10 chr11 134452384 false 425ba5eb6c95b60bafbf2874493a56c3
 11 chr12 132349534 false d17d70060c56b4578fa570117bf19716
 12 chr13 114142980 false c4f3084a20380a373bbbdb9ae30da587
 13 chr14 106368585 false c1ff5d44683831e9c7c1db23f93fbb45
 14 chr15 100338915 false 5cd9622c459fe0a276b27f6ac06116d8
 15 chr16 88827254 false 3e81884229e8dc6b7f258169ec8da246
 16 chr17 78774742 false 2a5c95ed99c5298bb107f313c7044588
 17 chr18 76117153 false 3d11df432bcdc1407835d5ef2ce62634
 18 chr19 63811651 false 2f1a59077cfad51df907ac25723bff28
 19 chr20 62435964 false f126cdf8a6e0c7f379d618ff66beb2da
 20 chr21 46944323 false f1b74b7f9f4cdbaeb6832ee86cb426c6
 21 chr22 49691432 false 2041e6a0c914b48dd537922cca63acb8
 22 chrX 154913754 false d7e626c80ad172a4d7c95aadb94d9040
 23 chrY 57772954 false 62f69d0e82a12af74bad85e2e4a8bd91
 24 chrM 16571 true d2ed829b8a1628d16cbeee88e88e39eb

ftp://ftp.completegenomics.com/ReferenceFiles/build36.fa.bz2�
ftp://ftp.completegenomics.com/ReferenceFiles/build37.fa.bz2�

Installing CGA™ Tools Obtaining Ancillary Files for Use with CGA Tools

© Complete Genomics, Inc. CGA Tools User Guide — 15

For build 37 CRR files, the output should be identical to the following:
ChromosomeId Chromosome Length Circular Md5
 0 chr1 249250621 false 1b22b98cdeb4a9304cb5d48026a85128
 1 chr2 243199373 false a0d9851da00400dec1098a9255ac712e
 2 chr3 198022430 false 641e4338fa8d52a5b781bd2a2c08d3c3
 3 chr4 191154276 false 23dccd106897542ad87d2765d28a19a1
 4 chr5 180915260 false 0740173db9ffd264d728f32784845cd7
 5 chr6 171115067 false 1d3a93a248d92a729ee764823acbbc6b
 6 chr7 159138663 false 618366e953d6aaad97dbe4777c29375e
 7 chr8 146364022 false 96f514a9929e410c6651697bded59aec
 8 chr9 141213431 false 3e273117f15e0a400f01055d9f393768
 9 chr10 135534747 false 988c28e000e84c26d552359af1ea2e1d
 10 chr11 135006516 false 98c59049a2df285c76ffb1c6db8f8b96
 11 chr12 133851895 false 51851ac0e1a115847ad36449b0015864
 12 chr13 115169878 false 283f8d7892baa81b510a015719ca7b0b
 13 chr14 107349540 false 98f3cae32b2a2e9524bc19813927542e
 14 chr15 102531392 false e5645a794a8238215b2cd77acb95a078
 15 chr16 90354753 false fc9b1a7b42b97a864f56b348b06095e6
 16 chr17 81195210 false 351f64d4f4f9ddd45b35336ad97aa6de
 17 chr18 78077248 false b15d4b2d29dde9d3e4f93d1d0f2cbc9c
 18 chr19 59128983 false 1aacd71f30db8e561810913e0b72636d
 19 chr20 63025520 false 0dec9660ec1efaaf33281c0d5ea2560f
 20 chr21 48129895 false 2979a6085bfe28e3ad6f552f361ed74d
 21 chr22 51304566 false a718acaa6135fdca8357d5bfe94211dd
 22 chrX 155270560 false 7e0e2e580297b7764e31dbc80c2540dd
 23 chrY 59373566 false 1e86411d73e6f00a10590f976be01623
 24 chrM 16569 true c68f52674c9fb33aef52dcf399755519

2. Move the verified reference to a final location.

Linux $ mv build36.crr /home/complete/data/ref
Mac OS X $ mv build36.crr /Users/complete/data/ref

3. Use the CGA Tools decodecrr command to test your reference file by extracting a sequence from the
reference genome based on user-defined coordinates. For example:
$ cgatools decodecrr \
--reference /home/complete/data/ref/build36.crr \
--range chr16:10000000-10000050

Obtaining Ancillary Files for Use with CGA Tools
The following files are required to generate certain types of CGA Tools output, and can be downloaded
from the Complete Genomics FTP server.

 RepeatMasker (from UCSC Genome Browser track) — Database of DNA sequences for interspersed
repeats and low complexity DNA sequences.

 Build 36 — ftp://ftp.completegenomics.com/AnnotationFiles/rmsk36.tsv.gz
 Build 37 — ftp://ftp.completegenomics.com/AnnotationFiles/rmsk37.tsv.gz

 Segmental Duplication (from UCSC Genome Browser track) — Duplications of more than 1000 bases
of non-RepeatMasked sequence.
[genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=214405809&g=genomicSuperDups]

 Build 36 — ftp://ftp.completegenomics.com/AnnotationFiles/segdup36.tsv.gz
 Build 37 — ftp://ftp.completegenomics.com/AnnotationFiles/segdup37.tsv.gz

ftp://ftp.completegenomics.com/AnnotationFiles/rmsk36.tsv.gz�
ftp://ftp.completegenomics.com/AnnotationFiles/rmsk37.tsv.gz�
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=214405809&g=genomicSuperDups�
ftp://ftp.completegenomics.com/AnnotationFiles/segdup36.tsv.gz�
ftp://ftp.completegenomics.com/AnnotationFiles/segdup37.tsv.gz�

Installing CGA™ Tools Obtaining Ancillary Files for Use with CGA Tools

© Complete Genomics, Inc. CGA Tools User Guide — 16

 Human Genome Reference Assembly Gene Annotation file — NCBI reference assembly and alignment
data.

 Build 36 — ftp://ftp.completegenomics.com/AnnotationFiles/gene36.tsv.gz
 Build 37 — ftp://ftp.completegenomics.com/AnnotationFiles/gene37.tsv.gz

 FASTA sequence — Human Genome Reference Sequence files converted to FASTA format:
 Build 36 — ftp://ftp.completegenomics.com/ReferenceFiles/build36.fa.bz2
 Build 37 — ftp://ftp.completegenomics.com/ReferenceFiles/build37.fa.bz2

 Variant Score Calibration Data — Data based on replicate experiments conducted by Complete
Genomics at various levels of coverage. These files are required to run CGA Tools mkvcf (when
producing calibrated scores) and calldiff (when producing SomaticOutput) tools. Note that mkvcf
requires version 2 of the calibration files, which can be found here:

 ftp://ftp.completegenomics.com/ScoreCalibrationFiles/var-calibration-v2.tgz
After downloading the calibration data, you must untar it using the following command:
tar -xzf /path/to/var-calibration-v2.tgz

Congratulations. You are now ready to use CGA Tools!

ftp://ftp.completegenomics.com/AnnotationFiles/gene36.tsv.gz�
ftp://ftp.completegenomics.com/AnnotationFiles/gene37.tsv.gz�
ftp://ftp.completegenomics.com/ReferenceFiles/build36.fa.bz2�
ftp://ftp.completegenomics.com/ReferenceFiles/build37.fa.bz2�
ftp://ftp.completegenomics.com/ScoreCalibrationFiles/var-calibration-v2.tgz�

Genome Comparison Tools The Problem of Genome Comparison

© Complete Genomics, Inc. CGA Tools User Guide — 17

Genome Comparison Tools

A Note on Conventions

To call low certainty regions or “no-call” regions, Complete Genomics augments the alphabet {A, C, G, T}
with two additional characters:

The “N” character corresponds to a one-base sequence that may be any base (A, C, G, or T).

The “?” character corresponds to zero or more bases of unknown sequence.

The Problem of Genome Comparison
Genome comparison is the process where genomic sequences are compared to determine whether they
are identical or different from each other. Comparing genomic sequence containing no-called bases is
more challenging because of the additional uncertainty of the sequence. In this case, it may be possible to
demonstrate that two sequences differ, or that they are compatible with each other, but it may not be
possible to demonstrate they are identical. With genome comparisons, there are three common tasks:

1. Is a genome identical, different, or compatible with the reference genome at a given location?

2. Is a genome identical, different, or compatible with a known common sequence?

3. Is a genome identical, different, or compatible with another genome at a given location?

The particular way a genome is described by re-sequencing technologies goes a long way towards solving
genome comparison problems 1 and 2: genomes are represented as a set of differences (or variants)
against the reference genome. The Complete Genomics variant file format differs from most other
common variant file formats in that in addition to describing the variants, it also distinguishes regions of
the genome that are called as reference from those that are no-called. As we will see later, this distinction
is essential in solving many comparison problems.

The following example shows how the Complete Genomics variations file describes the situation where
chr1 is a diploid chromosome and chr2 is a haploid chromosome:

chr1 reference: CATGACCCGCAAA-TCTGAAACTATCTGGCCCTTGGCAGGGG--A
chr1 haplotype 1: ?ATGACCTGCAAAATCTGAAACT--CTGGCCCTTGGCAGGGGGGA
chr1 haplotype 2: ?ATGACCCGCAAAATCTGAAACTATCTGGCTNTTGGCAGGGT--A

chr2 reference: TGATATTTTTCATCAACATTACAGGCA
chr2: TGATATTTTTNATCAACACGACAGGCA

Figure 3 shows the corresponding variant file.

Genome Comparison Tools Problems Not Solved by Variant File Format

© Complete Genomics, Inc. CGA Tools User Guide — 18

Figure 3: Variant File

The genome is first aligned to the reference, and then split into loci. Each locus may describe multiple
alleles (if ploidy > 1), and for each allele at each locus, there may be one or more lines (or “calls”) to
describe the sequence. The variant file describes 0-based offsets within the reference chromosome.

In the variant file in Figure 3, locus 3 describes a heterozygous SNP (one-base polymorphism on one
allele, reference on the other allele). Locus 5 describes a homozygous insertion. The allele column is used
to distinguish the alleles of calls within a locus. For example, the “ref” and “ins” calls of locus 11 are on the
same allele, whereas the “snp” call is on the opposite allele. To show that two calls of different loci are on
the same haplotype, the format uses the hapLink field. Calls known to be on the same haplotype have the
same hapLink value; calls with different hapLink values may or may not be on the same haplotype (the
phasing is not known).

For a detailed reference of the Complete Genomics variant (var) file format, see the Data File Formats
document.

Problems Not Solved by Variant File Format
One challenge of genome comparison is that aligning a genome to the reference is not always consistent.
For example in Figure 3, the homozygous insertion at locus 5 could have also been described by the same
homozygous insertion three bases to the left. Or the substitution at locus 16 could have been described as
two SNPs. Comparing two genomes that describe the same sequence in different ways can be
complicated.

We could make canonicalization rules such as “always use the leftmost insertion for any insertion that
has multiple possible representations” or “always decompose an allele consisting of a SNP, two reference
bases, then another SNP, into separate calls.” Indeed, Complete Genomics has rules like these that are

>
l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

v
a
r
S
c
o
r
e
V
A
F

v
a
r
S
c
o
r
e
E
A
F

v
a
r
F
i
l
t
e
r

h
a
p
L
i
n
k

x
R
e
f

a
l
l
e
l
e
F
r
e
q

a
l
t
e
r
n
a
t
i
v
e
C
a
l
l
s

1 2 all chr1 0 1 no-call = ?
2 2 all chr1 1 7 ref = =
3 2 1 chr1 7 8 snp C T 87 87 PASS 1 dbsnp:123
3 2 2 chr1 7 8 ref C C 57 57 PASS 2 dbsnp:123
4 2 all chr1 8 13 ref = =
5 2 1 chr1 13 13 ins A 15 36 VQLOW
5 2 2 chr1 13 13 ins A 19 42 VQLOW
6 2 all chr1 13 22 ref = =
7 2 1 chr1 22 24 del AT 60 47 PASS 1
7 2 2 chr1 22 24 ref AT AT 75 55 PASS 2
8 2 all chr1 24 29 ref = =
9 2 1 chr1 29 31 ref CC CC 57 57 PASS 1
9 2 2 chr1 29 31 no-call-ri CC TN 65 65 PASS 2
10 2 all chr1 31 40 ref = =
11 2 1 chr1 40 41 ref G G 129 101 PASS 1
11 2 1 chr1 41 41 ins GG 118 120 PASS 1
11 2 2 chr1 40 41 snp G T 479 479 PASS 2
12 2 all chr1 41 42 ref = =
13 1 all chr2 0 10 ref = =
14 1 1 chr2 10 11 no-call-rc C N 50 47 PASS
15 1 all chr2 11 18 ref = =
16 1 1 chr2 18 20 sub TT CG 102 102 PASS
17 1 all chr2 20 27 ref = =

Genome Comparison Tools Problems Not Solved by Variant File Format

© Complete Genomics, Inc. CGA Tools User Guide — 19

generally followed. But there are at least three remaining problems in solving the genome comparison
problems described above:

 Known variants are not always described in their canonical form.
For example, entries rs34330821 and rs34544546 in the dbSNP database of known variants describe
equivalent insertions that are 18 bases apart. This may seem superficial, in that dbSNP entries that
are not described in their canonical form can be canonicalized. But if our canonical form uses less
decomposition than the dbSNP submission, this may not be possible; if a dbSNP submission has been
decomposed, the submission has lost information about nearby variants that exist on the same
haplotype.

 Canonical forms of near-identical sequences may be more different than the non-canonical forms.
For example, suppose we have a genome that is equivalent to a SNP and an insert against the
reference, as described in canonicalization 1:
Reference: TG A TGTGAATTGGTG --------------------------- AGT
Canonicalization 1: TG C TGTGAATTGGTG TAGTGTGAATGAGTGTGTGAATTGGTG AGT

Reference: TG A--------------------------- TGTGAATTGGTGAGT
Canonicalization 2: TG CTGTGAATTGGTGTAGTGTGAATGAGTG TGTGAATTGGTGAGT
The insert in canonicalization 1 might be the simplest way to describe the genome if the SNP did not
exist. But one could argue that the single substitution in canonicalization 2 is the simplest
canonicalization of the genome, given that the SNP does exist and the TGTGAATTGGTG sequence is
repeated immediately after the SNP, in the inserted region. (This would be the case for a
canonicalization which favors fewer calls.) It is not obvious by visual inspection that the insert from
canonicalization 1 and the substitution of canonicalization 2 differ by only a SNP.

 No-calls may not be canonicalized like insertions or deletions, such that an insert may be compatible
with another genome only when viewing a larger sequence of the genome.
For example, suppose we have the following reference and the following genome:

Reference: CGAAAAAAA-TTTTCG
Genome: CGAAAAAAAATTTTCG
Now suppose the genome reconstruction process discovers that an insertion has occurred, but it
does not know if the first base in the run of A’s is really an A, or perhaps was a C. In this case, we are
forced to align the no-call at the beginning as follows:

Reference: CG-AAAAAAATTTTCG
Genome: CGNAAAAAAATTTTCG
Length no-calls (“?”) may further complicate the situation so that the alignment is unclear. For
example, suppose in the same example above, in addition to not knowing if the first base of the run is
an A or a C, we also don’t know the length of the run of A’s at all. Suppose also that we know that the
run of T’s has increased in length from four to five. There could be at least two reasonable alignments
of the result, corresponding to a called insert or a called SNP:

Reference: CGAAAAAAATTTT-CG
Alignment 1: CG?AAAAAATTTTTCG
Reference: CG-AAAAAAATTTTCG
Alignment 2: CG?AAAAAATTTTTCG

Genome Comparison Tools Genome Comparison with CGA Tools

© Complete Genomics, Inc. CGA Tools User Guide — 20

Genome Comparison with CGA Tools
There is a wide spectrum of useful genome comparison methods, which range in their sensitivity to the
canonical alignment of called sequence. Algorithms that are very sensitive to canonical alignment tend to
declare sequences inconsistent when in fact they are consistent. Algorithms that are less sensitive to
canonical alignment tend to be less discriminating in terms of the quality of the alignment of called
sequence.

CGA Tools includes four small variant genome comparison utilities that provide varying degrees of
sensitivity to inconsistent canonical alignments:

 snpdiff can be used to compare the results of a SNP caller to a Complete Genomics variant file. It is
quite sensitive to the canonical alignment of called sequence.

 calldiff can be used to compare two variant files. Because calldiff has access to all the aligned calls
from the two genomes being compared, it is capable of performing sequence comparison to
determine whether calls in the two genomes with different alignment are in fact, the same call. This
capability makes calldiff less sensitive to canonical alignment of called sequence than other CGA
Tools that perform genome comparison.

 listvariants/testvariants can be used to compare multiple variant files. Because testvariants takes an
individual variant and compares it to all the calls in a superlocus from each genome, it only has
access to the aligned calls from one genome and not to what variants are expected to be nearby the
individual variant it is testing for. Thus, the sensitivity to canonical alignment of called sequence will
be somewhere between snpdiff and calldiff.

 mkvcf can be used to compare multiple variant files and has sensitivity to canonical alignment
between snpdiff and testvariants. mkvcf differs from listvariants/testvariants in that it provides
output in VCF 4.1 format and contains the rich set of annotations Complete Genomics provides with
each dataset.

Figure 4 illustrates the tradeoffs among the utilities.

Figure 4: Sensitivity of Genome Comparison Algorithms

Pro: Tends to flag poorly aligned
alleles.

Con: Tends to falsely declare
mismatches.

Pro: Genomes with consistent calls
are declared consistent.

Con: Tends to lose information that
calls are poorly aligned.

Sensitive to canonical
alignment

Insensitive to canonical
alignment

snpdiff calldiff

Genome comparison programs vary in their sensitivity to canonical alignment. Each algorithm has
its merits.

testvariantsmkvcf

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 21

snpdiff
Compares genotype calls to Complete Genomics var or masterVarBeta files. The following sections
describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output File Format: Standard and Verbose Reports
 Output File Format: Stats Report
 Example

Synopsis
cgatools snpdiff --help
 --genotypes <genotype_file>
 --variants <variants_file>#<filter1>,<filter2>
 --reference <crr_file>
 --output-prefix <prefix>
 --reports <report_type>[,<report_type>]

Description
The snpdiff tool compares genotype calls to Complete Genomics var and masterVarBeta files. It is
particularly useful for comparing a Complete Genomics variant file to genotype calls provided by an
alternative sequencing or genotyping platform.

Analysis Pipeline Version Effects

 Analysis Pipeline version 2.4 introduced updated var and masterVarBeta file formats to provide
new features such as ambiguous calling, minor allele frequencies from the 1000 Genomes Project,
and changes to the variant quality flagging system. When operating on files generated before
Analysis Pipeline 2.4, snpdiff converts the output to the version 2.4 file format. It provides variant
quality flags in the varFilter column (instead of varQuality) and adds alleleFreq and alternativeCalls
columns whose fields are left empty.

 Analysis Pipeline version 2.0 introduced two independent scoring methods to quantify confidence in
the reported call for each allele: Variable Allele Fraction (VAF) Scoring and Equal Allele Fraction
(EAF) Scoring. The var and masterVar files generated after 2.0 include the varScoreVAF and
varScoreEAF fields. When operating on files generated before 2.0, snpdiff fills varScoreVAF and
varScoreEAF fields with the previously used metric totalScore. The varFilter field is left empty.

Command Line Options

Option Description
-h or --help Print command-line help.
--genotypes <genotype_file> The input genotypes file.
--variants
<variants_file>#<filter1>,<filter2>

The input variant file, a var or masterVarBeta file. Optionally
you can include filters used to turn selected calls into no-calls.
See the filtering syntax in the varfilter (beta) tool description.

--reference <crr_file> The reference CRR file. Specify the full path to the reference
file.

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 22

Option Description
--output-prefix <prefix> The path prefix for all output reports. This prefix can be used

in two ways:
 If a path is specified (for example “/home/myFiles”),

report files are saved to that location.
 If a string is specified (for example “Run20111011”) it is

appended to the start of the filename, and the file will be
saved in the active directory.

--reports <report>[,<report>...] Comma-separated list of reports to generate. A report is one
of:
 Output: Standard output report.
 Verbose: Verbose report.
 Stats: Statistics report.

Input Files
snpdiff takes as input a genotype calls file, a Complete Genomics variant (var-[ASM-ID].tsv.bz2) or
masterVar file (masterVarBeta-[ASM-ID].tsv.bz2), and a reference CRR file of the appropriate build. In
addition, you can filter the input file to turn selected calls into no-calls, as described for varfilter (beta).

The input genotype calls file must be a tab-delimited file with columns indicating the data to be
compared. Table 1 lists the possible columns; note that the order of columns is not significant, but column
titles must be conserved. Any additional columns are passed directly to the output. Figure 5 shows an
example input file.

Table 1: Input Columns used for Comparison

Column Name Usage Notes
SNPID (Optional)
SNP (Optional)
Chromosome (Required)
Offset0Based (Required) The base positions must be represented in zero based coordinates.
GenotypesStrand (Optional)
Genotypes (Optional) snpdiff can be run without the Genotypes column, for example, to see what

variants are present in both datasets. The column must be present to actually compare
the genotype and genome calls.

Figure 5: SNP Calls As Input to snpdiff

SNPID SNP Chromosome Offset0Based GenotypesStrand Genotypes

rs2775537 A/G chr21 14601414 + AA

rs2742158 C/T chr21 14638915 + CC

rs2792379 C/T chr21 15105484 + TT

rs2822127 A/G chr21 15170634 + GG

rs1985740 C/T chr21 15173845 + CC

rs3115511 A/G chr21 15214707 + AA

rs2822432 C/T chr21 15516947 + CC

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 23

Output File Format: Standard and Verbose Reports
Table 2: Columns in snpdiff Output and Verbose Reports

Output Verbose Column Description
1 1 SNPID SNP identifier from input genotypes file.
2 2 SNP Possible alleles at this SNP.
3 3 Chromosome Chromosome name of SNP in text: chr1, chr2,…,chrX, chrY, chrM

from the input genotypes file.
4 4 Offset0Based Coordinate of SNP in zero-based coordinates.
5 5 GenotypesStrand (If present in the input file) The strand of the calls in the Genotypes

column (+ or -, defaults to +).
6 6 Genotypes (If present in the input file) The calls, one per allele from the

genotypes file. The following calls are recognized:
A,C,G,T A called base.
N A no-call.
- A deleted base.
. A non-SNP variation.

7 7 Reference The reference base at the given position.
8 8 VariantFile The Complete Genomics variant file calls, one per allele. The character

codes are the same as is described for the Genotypes column.
9 DiscordantAlleles (Standard Output only) The number of alleles that are discordant with

calls in the VariantFile column. If the VariantFile is haploid at the given
position but two alleles are provided in the Genotypes column, each
genotype allele is compared against the haploid call of the VariantFile.

10 NoCallAlleles (Standard Output only) The number of alleles that were no-called in
the VariantFile column. If the VariantFile is haploid at the given
position but two alleles are provided in the Genotypes column, then a
VariantFile no-call is counted twice.

 9 Locus Identifier (index) of a locus.
 10 Ploidy The ploidy of the reference genome at the locus (= 2 for autosomes, 2

for pseudo-autosomal regions on the sex chromosomes, 1 for males on
the non-pseudo-autosomal parts of the sex chromosomes, 1 for
mitochondrion, 2 if varType is no-ref or PAR-called-in-X). The
reported ploidy is fully determined by gender, chromosome and
location, and is not inferred from the sequence data.

 11 Allele Identifier for each allele at the locus.
 12 chromosome Chromosome name of SNP in text: chr1, chr2,…,chrX, chrY, chrM from

Complete Genomics variant file.
 13 Begin Coordinate specifying the base position of the SNP using half-open, 0

based coordinates.
 14 End Coordinate specifying the base position of the SNP using half-open, 0

based coordinates.
 15 varType Type of variation: one of snp, ins, del, sub, ref, no-call-rc, no-

call-ri, no-call, No-ref, or PAR-called-in-X.
 16 Reference Base call on the reference sequence.
 17 alleleSeq Observed sequence of the allele in the Complete Genomics variation

file.
 18 varScoreVAF Variable allele fraction model confidence score from the Complete

Genomics variation file (varScoreVAF column). For genomes
assembled before Analysis Pipeline software version 2.0, this field is
populated with the totalScore. This field is empty for reference calls or
no-calls.

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 24

Output Verbose Column Description
 19 varScoreEAF Equal allele fraction model confidence score from the Complete

Genomics variation file (varScoreEAF column). For genomes
assembled before Analysis Pipeline software version 2.0, this field is
equivalent to the totalScore. This field is empty for reference calls or
no-calls.

 20 varFilter List of indicators of low-quality or incomplete resolution of the variant
call. If “PASS”, then the allele passes all relevant quality tests.
Otherwise, the list includes one or more semicolon-separated values
from the following possible filters:
 VQLOW — indicates the call is homozygous and allele1VarScoreVAF

is less than 20 dB, or the call is not homozygous and
allele1VarScoreVAF is less than 40 dB.

 SQLOW — Indicates somatic variant has somaticScore < -10.
 FET30 — Indicates somatic variant has fisherSomatic < 30.
 AMBIGUOUS — For homozygous non-reference alleles, indicates

there was another non-reference hypothesized sequence that
scored within 10 dB of the call; for heterozygous non-reference
alleles, indicates there was another non-reference hypothesized
sequence that scored within 20 dB of the call.

 21 hapLink Identifier that links an allele at one locus to alleles at other loci.
Currently only populated for very proximate variations that were
either assembled together or were determined to be in phase using a
correlation-based analysis between two variation intervals one mate
pair away. Calls that share a hapLink identifier are expected to be on
the same haplotype. Calls with haplinks appearing only once in the file
and calls with no haplinks can be interpreted similarly: there is no
phasing information with any other loci.

 22 xRef Field containing external variation identifiers, populated for variations
corroborated directly by dbSNP.

Format for dbSNP: dbsnp.<build>:<rsID>, with multiple entries
separated by the semicolon (;). <build> indicates in which build of
dbSNP this entry first appeared. For example, “dbsnp.129:rs12345”.

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 25

Output Verbose Column Description
 23 alleleFreq Allele frequency value(s) for the entire call or for parts of the call that

are corroborated directly by external sources. The source is 1000
Genomes Project minor allele frequency information in dbSNP.

Format is <source>:<frequency>, with multiple pairs separated
by a semicolon. Precision of frequency is three decimal places.

Format for dbSNP becomes dbsnp:<frequency>. Multiple entries
for the same type of source mirror the multiple entries for this source
appearing in xRef.

If an allele frequency value is not available for a dbSNP record, the
corresponding position in the alleleFreq column is left empty.

 When the call matches... The alleleFreq field shows...
1 rsID with known
frequency.

dbsnp:0.234

1 rsID with unknown
frequency.

(empty string)

2 rsIDs (independently or
as a combination) with
both known frequencies.

dbsnp:0.234;dbsnp:0.123

2 rsIDs with both unknown
frequencies.

; (a single semicolon)

3 rsIDs with 1 known and 2
unknown frequencies.

Depending on which of the
frequencies are unknown, one of the
following:
dbsnp:0.234;;
;dbsnp:0.234;
;;dbsnp:0.234

 24 alternativeCalls Contains alternate calls for alleles designated “AMBIGUOUS”.
Formatted as a semicolon-separated list of <sequence>:<score>
pairs, where <sequence> is a hypothesized nucleotide sequence, and
<score> is the score of that hypothesized sequence, relative to the
called sequence.

For example, if alternativeCalls is “AG:-1;G:-8”, then sequence AG
scored 1 dB less than the called sequence and G scored 8 dB less than
the called sequence.

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 26

Figure 6 shows an example of the snpdiff Output file produced from the input shown in Figure 3.

Figure 6: snpdiff Output Report Example

The result for each allele described in the VariantFile column above are any base call (“A”, “C”, “G”, or “T”),
a no-call (“N”), a deletion (“-”), or a variation that is not consistent with a genotype at all (“.”). To compare
the genotype calls to the calls in the variant file, snpdiff first determines the variant file calls at the given
position. The algorithm used is sensitive to the canonical alignment, and it is aggressive in terms of
making a base call at positions where the call does not have a varType of “snp” or “ref”. That being said, it
is tested to be largely concordant with calls made by several alternative technologies. A discordance
found by snpdiff is likely to be a true discrepancy between the calls made by the SNP caller and the
variant file, rather than a mis-alignment of the two. For more information about the algorithm, see
“snpdiff Algorithm” in the Appendix.

Figure 7 shows an example of the snpdiff Verbose Output file produced from the input shown in Figure 3.

Figure 7: snpdiff Verbose Report Output

S
N
P
I
D

S
N
P

C
h
r
o
m
o
s
o
m
e

O
f
f
s
e
t
0
B
a
s
e
d

G
e
n
o
t
y
p
e
s
S
t
r
a
n
d

G
e
n
o
t
y
p
e
s

R
e
f
e
r
e
n
c
e

V
a
r
i
a
n
t
F
i
l
e

D
i
s
c
o
r
d
a
n
t
A
l
l
e
l
e
s

N
o
C
a
l
l
A
l
l
e
l
e
s

rs2792379 C/T chr21 15105484 + TT C TT 0 0

rs219674 A/G chr21 27728433 + AA A NN 0 2

rs4817113 G/T chr21 27776818 + GG G AG 1 0

rs2164171 C/T chr21 27789057 + CC T CC 0 0

rs2830331 C/T chr21 28034834 + TT T .- 0 0

rs2830427 A/C chr21 28085291 + CC A CC 0 0

S
N
P
I
D

S
N
P

C
h
r
o
m
o
s
o
m
e

O
f
f
s
e
t
0
B
a
s
e
d

G
e
n
o
t
y
p
e
s
S
t
r
a
n
d

G
e
n
o
t
y
p
e
s

R
e
f
e
r
e
n
c
e

V
a
r
i
a
n
t
F
i
l
e

l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

rs2792379 C/T chr21 15105484 + TT C T 21248606 2 1 chr21

rs2205585 C/T chr21 17166670 + CT C C 21267360 2 1 chr21

rs2823595 A/T chr21 17442386 + AA T A 21269698 2 1 chr21

rs4817113 G/T chr21 27776818 + GG G A 21375235 2 2 chr21

rs370092 A/G chr21 46021606 + GG A G 21511833 2 1 chr21

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 27

Figure 7: snpdiff Verbose Report Output (continued)

Output File Format: Stats Report
The Stats report is a comma-separated file with tables describing the results of the SNP comparison for
each diploid genotype. There are three classes of tables that describe the comparison results (column
headers) versus the genotype classifications (row labels):

 Locus classification: describes detailed match classifications (Figure 8 and Figure 9). These are
contingency tables of genotype classifications by comparison results. Results are described both as a
fraction of the total and by counts.

 Locus concordance: rolls match classifications into “discordance” and “no-call” (Table 10 and Table
11). A locus is considered discordant if it is discordant for either allele. A locus is considered no-call
if it is concordant for both alleles but has a no-call on either allele. Results are described both as a
fraction of the total and by counts.

 Allele concordance: similar to locus concordance but describes the comparison results for each allele
separately (Table 12 and Table 13).

Table 3 and Table 4 describe the genotype and comparison classification values used in the Stats reports.

Table 3: Genotype Classifications

Class Description
ref-ref Both alleles from the genotypes file match the Complete Genomics variations file, which matches

reference.
het-ref-alt The alleles are heterozygous with one reference allele and one alternative allele.
het-alt-alt The alleles are heterozygous with both alleles being non-reference.
hom-alt-alt The alleles are homozygous and both are non-reference.

Table 4: Comparison Classifications

Class Description
match-match Both alleles from the genotypes file match the Complete Genomics variations file.
nocall-match One allele is a nocall and one allele matches the Complete Genomics variations file.
nocall-nocall Both alleles are not called.
match-mismatch One allele from the genotypes file matches the Complete Genomics variations file while

the other one does not.
mismatch-mismatch Both alleles from the genotypes file disagree with the Complete Genomics variations file.
nocall-mismatch One allele is a nocall and the other allele does not match the Complete Genomics

variations file.

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

v
a
r
S
c
o
r
e
V
A
F

v
a
r
S
c
o
r
e
E
A
F

v
a
r
F
i
l
t
e
r

h
a
p
L
i
n
k

x
R
e
f

a
l
l
e
l
e
F
r
e
q

a
l
t
e
r
n
a
t
i
v
e
C
a
l
l
s

15105484 15105485 snp C T 40 40 PASS dbsnp.100:rs2792379

17166670 17166671 ref C C 47 28 PASS

17442386 17442387 snp T A 169 169 PASS dbsnp.100:rs2823595

27776818 27776819 snp G A 179 179 PASS 5332744

46021606 46021607 snp A G 170 151 PASS 4604861 dbsnp.80:rs370092

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 28

Class Description
match-nonsnp One allele matches while the other variant is not a SNP.
nonsnp-nonsnp Neither allele is a SNP.
nocall-nonsnp One allele is a nocall and the other is not a SNP.

The following figures show examples of the three table types.

Figure 8: Locus Classification by Fraction of Total

Figure 9: Locus Classification by Count

Figure 10: Locus Concordance by Fraction

G
e
n
o
t
y
p
e

m
a
t
c
h
-
m
a
t
c
h

n
o
c
a
l
l
-
m
a
t
c
h

n
o
c
a
l
l
-
n
o
c
a
l
l

m
a
t
c
h
-
m
i
s
m
a
t
c
h

m
i
s
m
a
t
c
h
-
m
i
s
m
a
t
c
h

n
o
c
a
l
l
-
m
i
s
m
a
t
c
h

m
a
t
c
h
-
n
o
n
s
n
p

m
i
s
m
a
t
c
h
-
n
o
n
s
n
p

n
o
n
s
n
p
-
n
o
n
s
n
p

n
o
c
a
l
l
-
n
o
n
s
n
p

t
o
t
a
l

ref-ref 0.9814 0.00465 0.01163 0.00233 0 0 0 0 0 0 1
het-ref-alt 0.94395 0.0295 0.02655 0 0 0 0 0 0 0 1
het-alt-alt 0 0 0 0 0 0 0 0 0 0 0
hom-alt-alt 0.96727 0.02909 0.00364 0 0 0 0 0 0 0 1
total 0.96552 0.01916 0.01437 0.00096 0 0 0 0 0 0 1

Locus classification by fraction of total

G
e
n
o
t
y
p
e

m
a
t
c
h
-
m
a
t
c
h

n
o
c
a
l
l
-
m
a
t
c
h

n
o
c
a
l
l
-
n
o
c
a
l
l

m
a
t
c
h
-
m
i
s
m
a
t
c
h

m
i
s
m
a
t
c
h
-
m
i
s
m
a
t
c
h

n
o
c
a
l
l
-
m
i
s
m
a
t
c
h

m
a
t
c
h
-
n
o
n
s
n
p

m
i
s
m
a
t
c
h
-
n
o
n
s
n
p

n
o
n
s
n
p
-
n
o
n
s
n
p

n
o
c
a
l
l
-
n
o
n
s
n
p

t
o
t
a
l

ref-ref 422 2 5 1 0 0 0 0 0 0 430
het-ref-alt 320 10 9 0 0 0 0 0 0 0 339
het-alt-alt 0 0 0 0 0 0 0 0 0 0 0
hom-alt-alt 266 8 1 0 0 0 0 0 0 0 275
total 1008 20 15 1 0 0 0 0 0 0 1044

Locus classification by count

Locus concordance by fraction

Genotype discordance nocall
ref-ref 0.00236 0.01628
het-ref-alt 0 0.05605
het-alt-alt 0 0
hom-alt-alt 0 0.03273
total 0.00099 0.03352

Genome Comparison Tools snpdiff

© Complete Genomics, Inc. CGA Tools User Guide — 29

Figure 11: Locus Concordance by Count

Figure 12: Allele Concordance by Fraction

Figure 13: Allele Concordance by Fraction

Example
This example shows a comparison between the HapMap project to SNP calls made by Complete
Genomics.

This example uses snpdiff to compare SNPs from a Yoruban female (NA19240, an individual genotyped in
the HapMap project) to SNP calls from the same individual sequenced by Complete Genomics.

Input files are SNPs generated by the Illumina Infinium platform and the corresponding Complete
Genomics variations file. The command produces three files:

 Output: lists a table of each compared SNP and their outcomes.
 Verbose: annotates the Output file with additional columns from the Complete Genomics variant file.
 Stats: summarizes statistics on the comparison.
cgatools snpdiff \
--genotypes /NA19240_HapMap_Infinium_37.tsv \
--variants /GS19240-1100-37-ASM/GS00028-DNA_C01/ASM/var-GS19240-1100-37-ASM.tsv.bz2 \
--reference /ref/build37.crr \
--output-prefix NA19240_37_snpdiff_ \
--reports Output,Verbose,Stats

Data for NA19240 and others are available as part of the 69 public genomes dataset available at
ftp2.completegenomics.com.

Genotype concordance discordance nocall total
ref-ref 422 1 7 430
het-ref-alt 320 0 19 339
het-alt-alt 0 0 0 0
hom-alt-alt 266 0 9 275
total 1008 1 35 1044

Locus concordance by count

Allele concordance by fraction

Genotype discordance nocall

ref-ref 0.00118 0.01395

het-ref-alt 0 0.0413

het-alt-alt 0 0

hom-alt-alt 0 0.01818

total 0.00049 0.02395

Genotype concordance discordance nocall total

ref-ref 847 1 12 860

het-ref-alt 650 0 28 678

het-alt-alt 0 0 0 0

hom-alt-alt 540 0 10 550

total 2037 1 50 2088

Allele concordance by count

ftp://ftp2.completegenomics.com/�

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 30

calldiff
Compares two variant files to determine where and how the two genomes differ. The following sections
describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Examples

Synopsis
cgatools calldiff --help
 --variantsA <first_var_file>#<filter1>,<filter2>
 --variantsB <second_var_file>#<filter1>,<filter2>
 --reference <crr_file>
 --output-prefix <prefix>
 --reports <report_type>[,<report_type>...]
 --diploid
 --locus-stats column-count <count>
 --max-hypothesis-count <count>
 --no-reference-cover-validation
 --genome-rootA <directory>
 --genome-rootB <directory>
 --beta
 --calibration-root <arg>

Description
The calldiff tool compares two variant files to determine where and how the two genomes differ. To
achieve this, it first gathers variants into superloci, which may concatenate several nearby variants. It
compares the genomes for each superlocus then refines the comparison result to get call-level and locus-
level detail.

calldiff is less sensitive than snpdiff to the canonical alignment. It achieves its specificity by being precise
about its superlocus definition. For more information on the algorithm and how superloci are created, see
“calldiff Algorithm” in the Appendix.

Analysis Pipeline Version Effects

 Analysis Pipeline version 2.4 introduced updated var and masterVarBeta file formats to provide
new features such as ambiguous calling, minor allele frequencies from the 1000 Genomes Project,
and changes to the variant quality flagging system. When operating on files generated before
Analysis Pipeline 2.4, calldiff converts the output to the version 2.4 file format. It provides variant
quality flags in the varFilter column (instead of varQuality) and adds alleleFreq and alternativeCalls
columns whose fields are left empty.

 Analysis Pipeline version 2.0 introduced two independent scoring methods to quantify confidence in
the reported call for each allele: Variable Allele Fraction (VAF) Scoring and Equal Allele Fraction
(EAF) Scoring. The var and masterVarBeta files generated after 2.0 include the varScoreVAF and
varScoreEAF fields. When operating on files generated before 2.0, calldiff fills varScoreVAF and
varScoreEAF fields with the previously used metric totalScore. The varFilter field is left empty

Data Structure Requirement

The calldiff tool requires input files to be located in the directory hierarchy in which the data package
was originally delivered by Complete Genomics.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 31

Command Line Options
Option Description
-h or --help Print command-line help.
--variantsA <first_var_file>
 #<filter1>,<filter2>

Specifies the full or relative path to the “A” input variant file.
Optionally you can include filters used to turn selected calls into
no-calls. See the filtering syntax in the varfilter (beta) tool
description.

--variantsB <second_var_file>
 #<filter1>,<filter2>

Specifies the full or relative path to the “B” input variant file.
Optionally you can include filters used to turn selected calls into
no-calls. See the filtering syntax in the varfilter (beta) tool
description.

--reference <crr_file> The reference CRR file. Specify the full path to the reference file.
--output-prefix <prefix> The path prefix for all output reports.
--reports <report_type>
 [,<report_type>...]

Comma-separated list of reports to generate.
A report is one of SuperlocusOutput, SuperlocusStats,
LocusOutput, LocusStats, VariantOutput,
SomaticOutput,
DebugCallOutput, DebugSuperlocusOutput, or
DebugSomaticOutput. Table 5 describes the report types.

--diploid Uses varScoreEAF instead of varScoreVAF in somatic score
computations. Also, uses diploid variant model instead of variable
allele mixture model.

--locus-stats-column-count <count> The number of columns for locus compare classification in the
locus statistics file. If this option is omitted, the column count
defaults to 15.

--max-hypothesis-count <count> The maximum number of possible phasings to consider for a
superlocus. If this option is omitted, the count defaults to 32.

--no-reference-cover-validation Turns off validation that all bases of a chromosome are covered by
calls of the variant file.

--genome-rootA <directory> The “A” genome directory.
--genome-rootB <directory> The “B” genome directory, with similar expectations as A.
--beta This flag enables the SomaticOutput report, which is beta

functionality.
--calibration-root <arg> The directory containing score calibration data. The directory

should contain directories version0.0.0 and version2.0.0.
For example:
/home/complete/var-calibration-v1

Table 5: calldiff Report Types

Report Description
SuperlocusOutput Superlocus classification.
SuperlocusStats Superlocus classification statistics.
LocusOutput Locus classification.
LocusStats Locus statistics.
VariantOutput Output includes columns from both variant files plus annotations from comparison

results. If the SomaticOutput report is requested, the output includes the contents of the
file specified by the --variantsA option with annotations from the same score ranks
as produced in the SomaticOutput report.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 32

Report Description
SomaticOutput List of simple variations that are present only in the file specified by the --variantsA

option, annotated with the score that indicates the probability of the variation being
truly somatic. To enable this report, you also need to specify the --beta, --genome-
rootA, and --genome-rootB options.

Note: Generating this report will cause calldiff to run 10 to 20 times as long as it would
otherwise.

DebugCallOutput Call classification.
DebugSuperlocusOutput Debug superlocus information.
DebugSomaticOutput Distribution estimates used for somatic rescoring. Only produced if SomaticOutput

report is also specified.

Input Files
calldiff accepts two Complete Genomics variations files (var-[ASM-ID].tsv.bz2) or master variation files
(masterVarBeta-[ASM].tsv.bz2) as input. These files can be in compressed form (.bz2). In addition, you
can filter the input files to turn selected calls into no-calls, as described for varfilter (beta).

If the command line specifies the SomaticOutput report, the input needs to include calibration data for
somatic score calculation. See “Obtaining a Reference Human Genome for Use with CGA Tools” for
download instructions.

Output Files
calldiff produces various output files depending on the list of reports to generate that was specified on
the command line. For each allele, calldiff generates a comparison classification value as described in
Table 6. calldiff creates superloci for comparison and generates a variety of different reports that display
the results of each comparison. For more information about superloci, see “calldiff Algorithm”.

This section describes these reports:

 SuperlocusOutput
 SuperlocusStats
 LocusOutput
 LocusStats
 SomaticOutput

Table 6: Classification of Comparison Results

Classification Description
ref-identical The alleles of the two variant files are identical to each other and the reference.
alt-identical The alleles of the two variant files are identical, but differ from the reference.
ref-consistent Due to ambiguities (no-called bases), it is impossible to determine whether the alleles are

identical. This classification indicates the alleles of the two variant files are consistent with each
other and the reference.

alt-consistent Due to ambiguities (no-called bases), it is impossible to determine whether the alleles are
identical. This classification indicates the alleles of the two variant files are consistent with each
other, but at least one allele differs from the reference.

onlyA The alleles of the two variant files differ, and file A differs from the reference.
onlyB The alleles of the two variant files differ, and file B differs from the reference.
Mismatch The alleles of the two variant files differ with each other and the reference.
phase-mismatch The two variant files would be consistent if the hapLink field had been empty, but the hapLink

entry causes them to differ.
ploidy-mismatch The superlocus did not have the same ploidy.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 33

For non-haploid superloci, the comparison results for the alleles are joined by a semi-colon. For example,
for a diploid hypothesis where variant file A calls reference and variant file B calls a het SNP, you will
have the comparison result “ref-identical;onlyB”.

For example, suppose we use calldiff to compare a tumor genome (file A) and a normal genome (file B)
from the same individual. We can find purported somatic mutations by looking for “ref-identical;onlyA”
or “onlyA;onlyA”. Somatic mutations also include cases where tumor is homozygous variant and normal
is homozygous reference. We can find purported loss of heterozygosity (LOH) by looking for
“ref-identical;onlyB” (assuming the loss of the non-reference allele in the tumor) or “alt-identical;onlyA”.
We might expect fewer superloci classified as “alt-identical;onlyB”, as the likely reason for this is
assembly error: overcall in the normal genome.

SuperlocusOutput

Table 7: Columns in SuperlocusOutput Reports

 Column Description
1 SuperlocusId Superlocus identifier number
2 Chromosome Chromosome name in text: chr1, chr2, …, chr22, chrX, chrY. The mitochondrial genome is

represented as chrM. The pseudo-autosomal regions within the sex chromosomes X and Y are
reported at their coordinates on chromosome X.

3 Begin Reference coordinate specifying the start of the superlocus using the half-open, zero-based
coordinate system.

4 End Reference coordinate specifying the end of the superlocus using the half-open, zero-based
coordinate system.

5 Classification Results of the comparison. For non-haploid superloci, the results are joined by a semi-colon.
See Table 6 for possible classification values.

6 Reference The reference sequence for the locus of variation. This value is blank in the case of insertions.
7 AllelesA The observed sequence at the locus of variation for both alleles from variant file A separated

by a semi-colon.
8 AllelesB The observed sequence at the locus of variation for both alleles from variant file B separated

by a semi-colon.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 34

SuperlocusStats

Figure 14: Example of a SuperlocusStats Report

SimpleClassification Count Pct

identical 32865 39.18%

consistent 12784 15.24%

onlyA 18291 21.80%

onlyB 19098 22.77%

mismatch 793 0.95%

phase-mismatch 54 0.06%

ploidy-mismatch 0 0.00%

Classification Count Pct

ref-identical;alt-identical 18242 21.75%

alt-identical;alt-identical 14623 17.43%

ref-identical;onlyB 12252 14.61%

ref-identical;onlyA 11903 14.19%

alt-identical;onlyB 5872 7.00%

ref-consistent;alt-consistent 5754 6.86%

alt-identical;onlyA 5506 6.56%

alt-identical;alt-consistent 2323 2.77%

alt-identical;ref-consistent 1954 2.33%

alt-consistent;alt-consistent 1623 1.93%

ref-identical;alt-consistent 1123 1.34%

ref-consistent;onlyB 756 0.90%

ref-consistent;onlyA 580 0.69%

alt-identical;mismatch 411 0.49%

alt-consistent;onlyA 274 0.33%

alt-consistent;onlyB 206 0.25%

ref-identical;mismatch 192 0.23%

ref-consistent;mismatch 93 0.11%

alt-consistent;mismatch 80 0.10%

ref-consistent;phase-mismatch 39 0.05%

onlyA;onlyA 28 0.03%

alt-consistent;phase-mismatch 15 0.02%

onlyB;onlyB 12 0.01%

mismatch;mismatch 6 0.01%

onlyA;mismatch 6 0.01%

ref-consistent;ref-consistent 6 0.01%

onlyB;mismatch 5 0.01%

ref-identical;ref-consistent 1 0.00%

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 35

Table 8: Columns in SuperlocusStats Reports

Column Column Name Description
Top 1 SimpleClassification Possible classification values regardless of whether they are

reference or alternate.
Top 2 Count Number of observations for each SimpleClassification category.

Top 3 Pct Percentage compared to the total Count of SimpleClassification
values.

Bottom 1 Classification All diploid permutations of possible Classification pairs except for
cases where both alleles have the same Classification.

Bottom 2 Count Number of observations for each Classification category.
Bottom 3 Pct Percentage compared to the total Count of Classification values.

LocusOutput

Figure 15: Example of a LocusOutput Report

Figure 15: Example of a LocusOutput Report (continued)

S
u
p
e
r
l
o
c
u
s
I
d

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

L
o
c
u
s
D
i
f
f
C
l
a
s
s
i
f
i
c
a
t
i
o
n

l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

4796416 A het-snp ref-identical;alt-identical 20882706 2 1
4796416 A het-snp ref-identical;alt-identical 20882706 2 2
4796416 B het-snp ref-identical;alt-identical 21198798 2 1
4796416 B het-snp ref-identical;alt-identical 21198798 2 2
4796419 B het-sub ref-consistent;alt-consistent 21198804 2 1
4796419 B het-sub ref-consistent;alt-consistent 21198804 2 2
4796422 A het-snp ref-identical;onlyA 20882714 2 1
4796422 A het-snp ref-identical;onlyA 20882714 2 2

S
u
p
e
r
l
o
c
u
s
I
d

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

v
a
r
S
c
o
r
e
V
A
F

v
a
r
S
c
o
r
e
E
A
F

v
a
r
F
i
l
t
e
r

h
a
p
L
i
n
k

x
R
e
f

a
l
l
e
l
e
F
r
e
q

a
l
t
e
r
n
a
t
i
v
e
C
a
l
l
s

4796416 chr21 9720985 9720986 ref A A 82 74 PASS
4796416 chr21 9720985 9720986 snp A C 893 876 PASS dbsnp.129:rs62218018
4796416 chr21 9720985 9720986 ref A A 159 173 PASS 4543635
4796416 chr21 9720985 9720986 snp A C 351 346 PASS 4543636 dbsnp.129:rs62218018
4796419 chr21 9721062 9721064 ref TG TG 210 175 PASS
4796419 chr21 9721062 9721064 sub TG CA 22 3 VQLOW
4796422 chr21 9721116 9721117 ref A A 371 359 PASS
4796422 chr21 9721116 9721117 snp A C 74 62 PASS dbsnp.108:rs4068641

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 36

Table 9: Columns in LocusOutput Reports

 Column Description
1 SuperlocusId Superlocus index.
2 File Variant File A or Variant File B.
3 LocusClassification Description of locus, whether it is a heterozygous, homozygous or no-call. Also

includes information about the type of variation: snp, sub, indel.
4 LocusDiffClassification Comparison results for each allele. Table 6 describes the types of classifications.
5 locus Numerical index identifier of a particular locus from the Complete Genomics variant

file (= 2 for autosomes, 2 for pseudoautosomal regions on the sex chromosomes, 1
for males on the non-pseudo-autosomal parts of the sex chromosomes, 1 for
mitochondrion, 2 if varType is no-ref or PARcalled-in-X). The reported ploidy
is fully determined by gender, chromosome and location, and is not inferred from the
sequence data.

6 ploidy Number of sets of the given variant in the genome.

7 haplotype The allele that each variant belongs to.
8 chromosome Chromosome name in text.
9 begin Reference coordinate specifying the start of the variation (not the locus) using the

half-open, zero-based coordinate system. See “Sequence Coordinate System” for
more information.

10 end Reference coordinate specifying the end of the variation (note the locus using the
halfopen, zero-based coordinate system. See “Sequence Coordinate System” for more
information.

11 varType Type of variation, if any, for the range of bases. Currently must be one of snp, ins, del,
sub, ref, no-call-rc, no-call-ri, no-call, No-ref, or PAR-called-in-X.

12 reference The reference sequence for the locus of variation. Empty when varType is “ins”. A
value of “=” indicates that you must consult the reference for the sequence; this
shorthand is only used in regions where no allele deviates from the reference
sequence.

13 alleleSeq The observed sequence at the locus of variation. Empty when varType is del.
Question mark (?) indicates zero or more unknown bases within the sequence. “N”
indicates exactly one unknown base within the sequence. Equal sign (=) is used as
shorthand to indicate identity to the reference sequence for non-variant sequence,
such as when varType is ref.

14 varScoreVAF Variable allele fraction model confidence score from the Complete Genomics
variation file (varScoreVAF column). For genomes assembled before Analysis
Pipeline software version 2.0, this field is populated with the totalScore. This field is
empty for reference calls or no-calls.

15 varScoreEAF Equal allele fraction model confidence score from the Complete Genomics
variation file (varScoreEAF column). For genomes assembled before Analysis
Pipeline software version 2.0, this field is equivalent to the totalScore. This field is
empty for reference calls or no-calls.

16 varFilter List of indicators of low-quality or incomplete resolution of the variant call. If
“PASS”, then the allele passes all relevant quality tests. Otherwise, the list includes
one or more semicolon-separated values from the following possible filters:
 VQLOW — Indicates the call is homozygous and allele1VarScoreVAF is less than

20 dB, or the call is not homozygous and allele1VarScoreVAF is less than 40 dB.
 SQLOW — Indicates somatic variant has somaticScore < -10.
 AMBIGUOUS — For homozygous non-reference alleles, indicates there was

another non-reference hypothesized sequence that scored within 10 dB of the
call; for heterozygous non-reference alleles, indicates there was another non-
reference hypothesized sequence that scored within 20 dB of the call.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 37

 Column Description
17 hapLink Identifier that links an allele at one locus to alleles at other loci. Currently only

populated for very proximate variations that were either assembled together or were
determined to be in phase using a correlation-based analysis between two variation
intervals one mate pair away. Calls that share a hapLink identifier are expected to be
on the same haplotype. Calls with haplinks appearing only once in the file and calls
with no haplinks can be interpreted similarly: there is no phasing information with
any other loci.

18 xRef Field containing external variation identifiers, populated for variations corroborated
directly by dbSNP and COSMIC.
Format for dbSNP: dbsnp.<build>:<rsID>, with multiple entries separated by
the semicolon (;). <build> indicates in which build of dbSNP this entry first
appeared. For example, “dbsnp.129:rs12345”.
Format for COSMIC: COSMIC.<type>:identifier, with multiple entries
separated by the semicolon (;). <type> indicates COSMIC classification of somatic
variants. For example for a non-coding variant, xRef would contain
“COSMIC:ncv_id:139111”.

19 alleleFreq Allele frequency value(s) for the entire call or for parts of the call that are
corroborated directly by external sources. The source is 1000 Genomes Project
minor allele frequency information in dbSNP.

Format is <source>:<frequency>, with multiple pairs separated by a semicolon.
Precision of frequency is three decimal places.

Format for dbSNP becomes dbsnp:<frequency>. Multiple entries for the same
type of source mirror the multiple entries for this source appearing in xRef.

If an allele frequency value is not available for a dbSNP record, the corresponding
position in the alleleFreq column is left empty.

 When the call matches... The alleleFreq field shows...

1 rsID with known frequency. dbsnp:0.234

1 rsID with unknown frequency. (empty string)

2 rsIDs (independently or as a
combination) with both known
frequencies.

dbsnp:0.234;dbsnp:0.123

2 rsIDs with both unknown
frequencies.

; (a single semicolon)

3 rsIDs with 1 known and 2
unknown frequencies.

Depending on which of the frequencies are
unknown, one of the following:
dbsnp:0.234;;
;dbsnp:0.234;
;;dbsnp:0.234

20 alternativeCalls Contains alternate calls for alleles designated “AMBIGUOUS”. Formatted as a
semicolon-separated list of <sequence>:<score> pairs, where <sequence> is a
hypothesized nucleotide sequence, and <score> is the score of that hypothesized
sequence, relative to the called sequence.

For example, if alternativeCalls is “AG:-1;G:-8”, then sequence AG scored 1 dB less
than the called sequence and G scored 8 dB less than the called sequence.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 38

LocusStats

A single file that provides summary statistics for each combination of locus class and the type of call
made, as shown in the following figures.

Figure 16: Locus Statistics: File A by Percent of LocusClassification

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
r
e
f
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

A het-del 42.13% 0.00% 0.00% 31.14% 10.49% 0.00% 5.97% 3.18% 0.00%

A het-ins 42.87% 0.00% 0.00% 26.44% 10.80% 0.00% 5.56% 4.52% 0.00%

A het-other 0.00% 28.32% 0.00% 0.00% 2.15% 24.61% 0.00% 0.00% 14.26%

A het-snp 48.18% 0.00% 0.00% 29.95% 14.25% 0.00% 4.41% 1.74% 0.00%

A het-sub 38.48% 0.00% 0.00% 27.62% 13.74% 0.00% 12.04% 1.70% 0.00%

A hom-del 0.00% 63.38% 0.00% 0.00% 0.00% 18.67% 0.00% 0.00% 10.22%

A hom-ins 0.00% 71.95% 0.00% 0.00% 0.00% 12.21% 0.00% 0.00% 10.25%

A hom-other 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A hom-snp 0.00% 66.89% 0.00% 0.00% 0.00% 25.11% 0.00% 0.00% 4.51%

A hom-sub 0.00% 59.43% 0.00% 0.00% 0.00% 23.46% 0.00% 0.00% 9.21%

A no-call-del 0.00% 0.00% 0.00% 0.00% 1.67% 0.00% 43.53% 43.38% 0.00%

A no-call-ins 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 41.68% 48.68% 0.00%

A no-call-no-call 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 92.05% 0.00% 0.00%

A no-call-other 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 38.68% 46.23% 5.66%

A no-call-snp 0.00% 0.00% 0.00% 0.00% 0.70% 0.00% 27.41% 60.68% 0.00%

A no-call-sub 0.00% 0.00% 0.00% 0.00% 2.99% 0.00% 34.33% 44.03% 0.00%

A total 28.89% 22.56% 0.00% 18.13% 8.54% 8.21% 4.95% 3.52% 1.85%

Locus stats for file A by pct of LocusClassification

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 39

Figure 16: Locus Statistics: File A by Percent of LocusClassification (continued)

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
B

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
m
i
s
m
a
t
c
h

o
t
h
e
r

t
o
t
a
l

A het-del5.52% 0.00% 0.00% 0.39% 0.00% 0.00% 1.17% 100.00%

A het-ins9.16% 0.00% 0.00% 0.13% 0.00% 0.00% 0.52% 100.00%

A het-oth0.00% 13.28% 0.00% 0.00% 4.88% 10.35% 2.15% 100.00%

A het-snp1.36% 0.00% 0.00% 0.01% 0.00% 0.00% 0.10% 100.00%

A het-sub4.58% 0.00% 0.00% 0.65% 0.00% 0.00% 1.18% 100.00%

A hom-del0.00% 4.53% 0.00% 0.00% 1.96% 0.36% 0.89% 100.00%

A hom-ins0.00% 3.92% 0.00% 0.00% 1.31% 0.15% 0.22% 100.00%

A hom-oth0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

A hom-snp0.00% 2.71% 0.00% 0.00% 0.61% 0.10% 0.08% 100.00%

A hom-sub0.00% 3.29% 0.00% 0.00% 1.75% 1.32% 1.54% 100.00%

A no-call0.00% 0.00% 0.00% 8.37% 0.00% 0.00% 3.04% 100.00%

A no-call0.00% 0.00% 0.00% 8.71% 0.00% 0.00% 0.93% 100.00%

A no-call0.00% 0.44% 0.22% 5.52% 0.00% 0.00% 1.77% 100.00%

A no-call0.00% 2.83% 0.00% 3.77% 0.00% 0.94% 1.89% 100.00%

A no-call0.00% 0.00% 0.13% 11.03% 0.00% 0.00% 0.06% 100.00%

A no-call0.00% 0.00% 0.00% 12.69% 0.00% 0.00% 5.97% 100.00%

A total 1.14% 1.07% 0.00% 0.49% 0.28% 0.12% 0.24% 100.00%

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 40

Figure 17: Locus Statistics: File B by Percent of LocusClassification

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
r
e
f
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

B het-del 42.51% 0.00% 33.94% 0.00% 0.00% 10.80% 4.40% 2.17% 0.00%
B het-ins 44.64% 0.00% 28.24% 0.00% 0.00% 10.59% 4.22% 4.08% 0.00%
B het-other 0.00% 27.74% 0.00% 0.00% 30.94% 3.58% 0.19% 0.19% 15.28%
B het-snp 49.63% 0.00% 31.93% 0.00% 0.00% 13.77% 2.69% 0.96% 0.00%
B het-sub 40.73% 0.00% 29.71% 0.00% 0.00% 14.50% 6.69% 1.39% 0.00%
B hom-del 0.00% 67.39% 0.00% 0.00% 18.66% 0.00% 0.00% 0.00% 8.48%
B hom-ins 0.00% 74.77% 0.00% 0.00% 13.55% 0.00% 0.00% 0.00% 8.28%
B hom-other 0.00% 0.00% 0.00% 0.00% 50.00% 0.00% 0.00% 0.00% 50.00%
B hom-snp 0.00% 68.16% 0.00% 0.00% 27.32% 0.00% 0.00% 0.00% 2.50%
B hom-sub 0.00% 67.08% 0.00% 0.00% 23.27% 0.00% 0.00% 0.00% 5.20%
B no-call-del 0.00% 0.00% 0.00% 0.00% 0.00% 1.08% 36.79% 51.00% 0.00%
B no-call-ins 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 35.09% 54.23% 0.00%
B no-call-no-call 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 90.33% 0.00% 0.00%
B no-call-no-call-ri 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
B no-call-other 0.00% 0.00% 0.00% 0.00% 0.67% 0.00% 26.00% 62.00% 1.33%
B no-call-snp 0.00% 0.00% 0.00% 0.00% 0.00% 0.81% 15.82% 69.50% 0.00%
B no-call-sub 0.00% 0.00% 0.00% 0.00% 0.00% 2.24% 26.87% 54.48% 0.00%
B total 29.30% 22.94% 19.04% 0.00% 8.88% 8.17% 3.71% 4.12% 1.17%

Locus stats for file B by pct of LocusClassification

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 41

Figure 17: Locus Statistics: File B by Percent of LocusClassification (continued)

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
B

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
m
i
s
m
a
t
c
h

o
t
h
e
r

t
o
t
a
l

B het-de5.09% 0.00% 0.11% 0.00% 0.06% 0.00% 0.91% 100.00%
B het-in7.61% 0.00% 0.28% 0.00% 0.00% 0.00% 0.35% 100.00%
B het-ot0.00% 6.79% 0.19% 0.00% 0.00% 10.00% 5.09% 100.00%
B het-sn0.91% 0.00% 0.01% 0.00% 0.01% 0.00% 0.08% 100.00%
B het-su4.74% 0.00% 0.56% 0.00% 0.00% 0.00% 1.67% 100.00%
B hom-de0.00% 2.83% 0.00% 0.00% 0.00% 0.19% 2.45% 100.00%
B hom-in0.00% 2.41% 0.00% 0.00% 0.00% 0.15% 0.83% 100.00%
B hom-ot0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
B hom-sn0.00% 1.58% 0.00% 0.00% 0.00% 0.08% 0.35% 100.00%
B hom-su0.00% 2.23% 0.00% 0.00% 0.00% 1.24% 0.99% 100.00%
B no-cal0.00% 0.00% 6.96% 0.00% 0.15% 0.15% 3.86% 100.00%
B no-cal0.00% 0.00% 9.57% 0.16% 0.00% 0.00% 0.96% 100.00%
B no-cal0.00% 0.56% 7.43% 0.37% 0.37% 0.00% 0.93% 100.00%
B no-cal0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
B no-cal0.00% 3.33% 5.33% 0.00% 0.00% 0.67% 0.67% 100.00%
B no-cal0.00% 0.00% ##### 0.14% 0.05% 0.00% 0.50% 100.00%
B no-cal0.00% 0.00% ##### 0.00% 0.00% 0.00% 2.99% 100.00%
B total 0.83% 0.63% 0.69% 0.01% 0.01% 0.12% 0.37% 100.00%

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 42

Figure 18: Locus Statistics: File A by Count

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
r
e
f
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
B

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
m
i
s
m
a
t
c
h

o
t
h
e
r

t
o
t
a
l

A het-del 755 0 0 558 188 0 107 57 0 99 0 0 7 0 0 21 1792

A het-ins 655 0 0 404 165 0 85 69 0 140 0 0 2 0 0 8 1528

A het-other 0 145 0 0 11 126 0 0 73 0 68 0 0 25 53 11 512

A het-snp 18549 0 0 11532 5488 0 1698 669 0 522 0 0 2 0 0 40 38500

A het-sub 294 0 0 211 105 0 92 13 0 35 0 0 5 0 0 9 764

A hom-del 0 713 0 0 0 210 0 0 115 0 51 0 0 22 4 10 1125

A hom-ins 0 990 0 0 0 168 0 0 141 0 54 0 0 18 2 3 1376

A hom-other 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

A hom-snp 0 13696 0 0 0 5141 0 0 923 0 555 0 0 125 20 16 20476

A hom-sub 0 271 0 0 0 107 0 0 42 0 15 0 0 8 6 7 456

A no-call-del 0 0 0 0 11 0 286 285 0 0 0 0 55 0 0 20 657

A no-call-ins 0 0 0 0 0 0 268 313 0 0 0 0 56 0 0 6 643

A no-call-no-call 0 0 0 0 0 0 417 0 0 0 2 1 25 0 0 8 453

A no-call-other 0 0 0 0 0 0 41 49 6 0 3 0 4 0 1 2 106

A no-call-snp 0 0 0 0 11 0 430 952 0 0 0 2 173 0 0 1 1569

A no-call-sub 0 0 0 0 4 0 46 59 0 0 0 0 17 0 0 8 134

A total 20253 15816 0 12705 5983 5752 3470 2466 1300 796 748 3 346 198 86 170 70092

Locus stats for file A by count

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 43

Figure 19: Locus Statistics: File B by Count

SomaticOutput

Somatic variation discovery is an important use case for calldiff. calldiff will identify variations that exist
only in the input file A and not in file B and assign a somatic score to each of those variants to help
identify the true somatic mutations. calldiff uses the scores provided in the Complete Genomics variation
file (varScoreVAF, or totalScores for data prior to Assembly 2.0) and the calibrated scores specified by the
user to determine which somatic mutations are called with higher confidence, and provides this
information as a single somatic score. It does so for all loci where the genome A has a simple variation (a
single SNP, DEL, INS, or SUB) and genome B is called as reference.

To aid in filtering for high quality variants, the SomaticOutput report includes three values:

 SomaticScore: integer that provides a rank order on somatic call confidence across all somatic
variation types specified in SomaticCategory.

 SomaticRank: number between 0 and 1 indicating the estimated fraction of events within the
SomaticCategory having SomaticScore less than that of the variant. It can be used to estimate the
sensitivity trade-off when applying a SomaticScore threshold.

F
i
l
e

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
i
d
e
n
t
i
c
a
l

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

r
e
f
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
B

a
l
t
-
i
d
e
n
t
i
c
a
l
;
o
n
l
y
A

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
r
e
f
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

r
e
f
-
i
d
e
n
t
i
c
a
l
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
a
l
t
-
c
o
n
s
i
s
t
e
n
t

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
B

r
e
f
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
c
o
n
s
i
s
t
e
n
t
;
o
n
l
y
A

a
l
t
-
i
d
e
n
t
i
c
a
l
;
m
i
s
m
a
t
c
h

o
t
h
e
r

t
o
t
a
l

B het-del 744 0 594 0 0 189 77 38 0 89 0 2 0 1 0 16 1750

B het-ins 645 0 408 0 0 153 61 59 0 110 0 4 0 0 0 5 1445

B het-other 0 147 0 0 164 19 1 1 81 0 36 1 0 0 53 27 530

B het-snp 18521 0 11915 0 0 5139 1004 360 0 341 0 4 0 3 0 31 37318

B het-sub 292 0 213 0 0 104 48 10 0 34 0 4 0 0 0 12 717

B hom-del 0 715 0 0 198 0 0 0 90 0 30 0 0 0 2 26 1061

B hom-ins 0 993 0 0 180 0 0 0 110 0 32 0 0 0 2 11 1328

B hom-other 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2

B hom-snp 0 13689 0 0 5487 0 0 0 502 0 318 0 0 0 17 70 20083

B hom-sub 0 271 0 0 94 0 0 0 21 0 9 0 0 0 5 4 404

B no-call-del 0 0 0 0 0 7 238 330 0 0 0 45 0 1 1 25 647

B no-call-ins 0 0 0 0 0 0 220 340 0 0 0 60 1 0 0 6 627

B no-call-no-call 0 0 0 0 0 0 486 0 0 0 3 40 2 2 0 5 538

B no-call-no-call-ri 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

B no-call-other 0 0 0 0 1 0 39 93 2 0 5 8 0 0 1 1 150

B no-call-snp 0 0 0 0 0 18 350 1538 0 0 0 292 3 1 0 11 2213

B no-call-sub 0 0 0 0 0 3 36 73 0 0 0 18 0 0 0 4 134

B total 20202 15815 13130 0 6125 5632 2561 2842 807 574 433 478 6 8 81 254 68948

Locus stats for file B by count

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 44

 varFilter: includes SQLOW value, which indicates low confidence in the somatic call.
For more information on how these fields are computed, see “calldiff for Scoring Somatic Variations
(beta)” in the Appendix.

To run calldiff with the SomaticOutput option, the --genome-rootA and --genome-rootB options
must also be specified, pointing to calibration data. You can download the calibration data from Complete
Genomics’ FTP site. See “Obtaining Ancillary Files for Use with CGA Tools” for instructions.

Figure 20: Example of SomaticOutput Report

Figure 20: Example of SomaticOutput Report (continued)

Table 10: Column Descriptions from SomaticOutput Report

 Column Description
1 SuperlocusId Superlocus index.
2 LocusClassification Description of locus, whether it is a heterozygous, homozygous or no-call. Also includes

information about the type of variation: snp, sub, indel.
3 locus Numerical index identifier of a particular locus from the Complete Genomics variant file.
4 ploidy The ploidy of the reference genome at the locus (= 2 for autosomes, 2 for pseudo-

autosomal regions on the sex chromosomes, 1 for males on the non-pseudo-autosomal
parts of the sex chromosomes, 1 for mitochondrion, 2 if varType is no-ref or PAR-
called-in-X). The reported ploidy is fully determined by gender, chromosome and
location, and is not inferred from the sequence data.

5 allele Identifier for each allele at the variation locus.
6 chromosome Chromosome name.

S
u
p
e
r
l
o
c
u
s
I
d

L
o
c
u
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n

l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

v
a
r
S
c
o
r
e
V
A
F

v
a
r
S
c
o
r
e
E
A
F

v
a
r
F
i
l
t
e
r

h
a
p
L
i
n
k

12 het-snp 992 2 2 chr1 49403 49404 snp C T 33 9 VQLOW;SQLOW
51 het-del 1234 2 2 chr1 64657 64658 del A 41 29 SQLOW
258 het-snp 12588 2 2 chr1 731685 731686 snp G A 29 -14 VQLOW;SQLOW
304 het-ins 13138 2 2 chr1 770312 770312 ins ACCT 570 583 PASS 4906
344 het-snp 13452 2 2 chr1 794703 794704 snp C T 412 412 PASS

S
u
p
e
r
l
o
c
u
s
I
d

x
R
e
f

a
l
l
e
l
e
F
r
e
q

a
l
t
e
r
n
a
t
i
v
e
C
a
l
l
s

V
a
r
C
v
g
A

V
a
r
S
c
o
r
e
A

R
e
f
C
v
g
B

R
e
f
S
c
o
r
e
B

S
o
m
a
t
i
c
C
a
t
e
g
o
r
y

V
a
r
S
c
o
r
e
A
C
a
l
i
b

R
e
f
S
c
o
r
e
B
C
a
l
i
b

S
o
m
a
t
i
c
R
a
n
k

S
o
m
a
t
i
c
S
c
o
r
e

12 dbsnp.100:rs2531246;dbsnp.130:rs74182487 ; 96 33 25 -21 snp 2 41 0.003 -28
51 dbsnp.130:rs71333268 36 41 40 38 del 8 68 0.053 -21
258 dbsnp.101:rs2995839 77 29 81 81 snp 1 57 0.002 -29
304 97 570 45 176 ins 36 77 0.941 4
344 58 412 73 129 snp 47 71 0.314 10

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 45

 Column Description
7 begin Reference coordinate specifying the start of the variation using the half-open, zero-based

coordinate system. See “Sequence Coordinate System” for more information.
8 end Reference coordinate specifying the end of the variation using the half-open, zero-based

coordinate system. See “Sequence Coordinate System” for more information.
9 varType Type of variation for the range of bases. Currently must be one of snp, ins, del, or sub.
10 reference The reference sequence for the locus of variation. Empty when varType is ins.
11 alleleSeq The observed sequence at the locus of variation. Empty when varType is del.
12 varScoreVAF Variable allele fraction model confidence score from the Complete Genomics variation

file (varScoreVAF column). For genomes assembled before Analysis Pipeline software
version 2.0, this field is populated with the totalScore. This field is empty for reference
calls or no-calls.

13 varScoreEAF Equal allele fraction model confidence score from the Complete Genomics variation
file (varScoreEAF column). For genomes assembled before Analysis Pipeline software
version 2.0, this field is equivalent to the totalScore. This field is empty for reference calls
or no-calls.

14 varFilter List of indicators of low-quality or incomplete resolution of the variant call. If “PASS”,
then the allele passes all relevant quality tests. Otherwise, the list includes one or more
semicolon-separated values from the following possible filters:
 VQLOW — Indicates the call is homozygous and allele1VarScoreVAF is less than 20 dB,

or the call is not homozygous and allele1VarScoreVAF is less than 40 dB.
 SQLOW — Indicates somatic variant has somaticScore < -10.
 AMBIGUOUS — For homozygous non-reference alleles, indicates there was another

non-reference hypothesized sequence that scored within 10 dB of the call; for
heterozygous non-reference alleles, indicates there was another non-reference
hypothesized sequence that scored within 20 dB of the call.

15 hapLink Identifier that links an allele at one locus to alleles at other loci. Currently only populated
for very proximate variations that were either assembled together or were determined to
be in phase using a correlation-based analysis between two variation intervals one mate
pair away. Calls that share a hapLink identifier are expected to be on the same haplotype.
Calls with haplinks appearing only once in the file and calls with no haplinks can be
interpreted similarly: there is no phasing information with any other loci.

16 xRef Field containing external variation identifiers, populated for variations corroborated
directly by dbSNP and COSMIC.

Format for dbSNP: dbsnp.<build>:<rsID>, with multiple entries separated by the
semicolon (;). <build> indicates in which build of dbSNP this entry first appeared. For
example, dbsnp.129:rs12345.

Format for COSMIC: COSMIC.<type>:identifier, with multiple entries separated
by the semicolon (;). <type> indicates COSMIC classification of somatic variants. For
example for a non-coding variant, xRef would contain “COSMIC:ncv_id:139111”.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 46

 Column Description
17 alleleFreq Allele frequency value(s) for the entire call or for parts of the call that are corroborated

directly by external sources. The source is 1000 Genomes Project minor allele frequency
information in dbSNP.

Format is <source>:<frequency>, with multiple pairs separated by a semicolon.
Precision of frequency is three decimal places.

Format for dbSNP becomes dbsnp:<frequency>. Multiple entries for the same type of
source mirror the multiple entries for this source appearing in xRef.

If an allele frequency value is not available for a dbSNP record, the corresponding
position in the alleleFreq column is left empty.

 When the call matches... The alleleFreq field shows...

1 rsID with known frequency. dbsnp:0.234

1 rsID with unknown frequency. (empty string)

2 rsIDs (independently or as a
combination) with both known
frequencies.

dbsnp:0.234;dbsnp:0.123

2 rsIDs with both unknown frequencies. ; (a single semicolon)

3 rsIDs with 1 known and 2 unknown
frequencies.

Depending on which of the frequencies
are unknown, one of the following:

dbsnp:0.234;;
;dbsnp:0.234;
;;dbsnp:0.234

18 alternativeCalls Contains alternate calls for alleles designated “AMBIGUOUS”. Formatted as a semicolon-
separated list of <sequence>:<score> pairs, where <sequence> is a hypothesized
nucleotide sequence, and <score> is the score of that hypothesized sequence, relative to
the called sequence.

For example, if alternativeCalls is “AG:-1;G:-8”, then sequence AG scored 1 dB less
than the called sequence and G scored 8 dB less than the called sequence.

19 VarCvgA The totalReadCount from the A genome masterVarBeta file (or if the A assembly is a var
file, the equivalent is computed by calldiff).

20 VarScoreA Equal to varScoreVAF of the A genome by default, or varScoreEAF if the --diploid
option is used.

21 RefCvgB The uniqueSequenceCoverage field from the reference scores file for genome B at this
locus.

22 RefScoreB The refScore field from the reference scores file for genome B at this locus.
23 SomaticCategory The category of this mutation. Possible categories are: snp, ins, del, and sub. The

somaticRank is described with respect to all mutations in the somaticCategory.
24 VarScoreACalib The calibrated VarScoreA under the allele fraction model defined by use of the

--diploid option and corrected for the count of events in this genome.
25 RefScoreBCalib The calibrated RefScoreB under the allele fraction model defined by the use of the

--diploid option and corrected for the count of events in this genome.
26 SomaticRank The estimated rank of this somatic mutation, amongst all true somatic mutations within a

given somaticCategory. Value is a number between 0 and 1; a value of 0.012 means, for
example, that 1.2% of the true somatic mutations in this somaticCategory have a
somaticScore less than the somaticScore for this mutation.

27 SomaticScore An integer that provides a total order on quality for all somatic mutations. It is equal to
−10 ∗ 𝑙𝑜𝑔10(𝑃(𝑓𝑎𝑙𝑠𝑒)/𝑃(𝑡𝑟𝑢𝑒))

under the assumption that this genome has a rate of somatic mutation equal to 1/Mb for
somaticCategory snp, 1/10Mb for somaticCategory ins, 1/10Mb for somaticCategory del,
and 1/20Mb for somaticCategory sub.

Genome Comparison Tools calldiff

© Complete Genomics, Inc. CGA Tools User Guide — 47

Examples

Gene LIPI and Variation

You are interested in studying the gene LIPI and its variation in two Complete Genomics-sequenced
individuals. You know that the LIPI gene is located at chr21:15481137-15579254 (UCSC coordinates).

This example shows a comparison of variants from two Complete Genomics-sequenced genomes
(GSXXXXX and the second is GSYYYYY) using calldiff.
cgatools calldiff \
--variantsA /GSXXXXX-DNA_A01_1120_37-ASM/GSXXXXX-DNA_A01/ASM/var-GSXXXXX-1100-37-ASM.tsv.bz2 \
--variantsB /GSYYYYY-DNA_A01_1120_37-ASM/GSYYYYY-DNA_A01/ASM/var-GSYYYYY-1100-37-ASM.tsv.bz2 \
--reference ref/build37.crr \
--output-prefix GSXXXXX_vs_GSYYYYY \
--reports SuperlocusOutput,SuperlocusStats,LocusOutput,LocusStats

In the SuperlocusOutput file, you would look for the all Superloci located between the boundaries of the
LIPI gene (chr21:15481137-15579254). These are the variants in the two genomes that were explicitly
defined into superloci for comparison purposes. You can then look over the output to discover loci that
are different in the two genomes. These will typically be defined classified as “onlyA or onlyB” indicating
that the variant was found in only one of the two genomes. The superlocus output will also provide
information on whether alleles were consistent with the reference sequence or not.

High-confidence Somatic Variants

You are interesting in finding a high-confidence set of somatic variants in a tumor sample that are not
present in a normal sample.

This example shows a comparison of a tumor genome to a matched normal sample using the
SomaticOutput option in calldiff.
cgatools calldiff \
--beta \
--variantsA GSXXXXX_tumor/ASM/GSXXXXX_tumor.tsv.bz2 \
--variantsB GSYYYYY_normal/ASM/GSXXXXX_normal.tsv.bz2 \
--reference /ref/build37.crr \
--calibration-root /ref/calibration-data \
--output-prefix tumor_vs_normal_ \
--reports SuperlocusOutput,SuperlocusStats,LocusOutput,LocusStats,SomaticOutput \
--genome-rootA GSXXXXX_tumor/GSXXXXX-DNA_C01/ASM/GSXXXXX-DNA_A01 \
--genome-rootB GSYYYYY_normal/GSYYYYY-DNA_D01/ASM/GSYYYYY-DNA_C01

Note that the report for the SomaticOutput option will take approximately four hours to generate,
depending on computing power and RAM and assuming the input variant files are masterVar files. It may
take substantially longer to generate SomaticOutput for var files because the totalReadCount must be re-
computed from EVIDENCE files.

In the resulting SomaticOutput report file, you can then rank the somatic score column in descending
order. Higher scores indicate a greater likelihood that there is indeed a somatic variation between the
two samples at this position (as opposed to a false positive).

Genome Comparison Tools listvariants (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 48

listvariants (beta)
Lists the non-redundant set of small variations found in an arbitrary number of genomes. The following
sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Examples

Synopsis
cgatools listvariants --help
 --beta
 --reference <crr_file>
 –-output <output_file>
 --variants <variant_fileA>#<filter1>,<filter2>
 --variants <variant_fileB>#<filter1>,<filter2>
 --variant-listing <previous_output>
 --list-long-variants

Description
The listvariants command lists the non-redundant set of small variations found in an arbitrary number of
genomes. It takes an arbitrary number of var or masterVar files as input, and produces a tab-delimited
format suitable for processing by the testvariants command. listvariants may be used in conjunction with
testvariants to perform multi-genome comparison of small variants.

Analysis Pipeline Version Effects

listvariants in CGA Tools version 1.5 was altered to support new canonicalization rules used for variant
calling in Analysis Pipeline version 2.0. Specifically, Analysis Pipeline version 2.0 uses a left-most
canonicalization of indels, whereas previous versions use a right-most canonicalization rule. To avoid re-
canonicalization of a large number of variants when running listvariants, we recommend that
comparison of var or masterVarBeta files from Pipeline versions earlier than 2.0 be performed using
listvariants in CGA Tools 1.4.

For more information about how listvariants combines small variants across multiple genomes, see
“listvariants Algorithm” in the Appendix.

Command Line Options

Option Description
-h or --help Print command-line help.
--beta Enables listvariants (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full path to the reference file. You can use

a positional argument to specify the CRR file.
--output <output_file> The output file. If this option is omitted, results are sent to STDOUT.

Genome Comparison Tools listvariants (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 49

Option Description
--variants <variant_file>
 #<filter1>,<filter2>

This option can be used once for each input variant file. Files can be var or
masterVar files. Optionally you can include filters used to turn selected calls
into no-calls. See the filtering syntax in the varfilter (beta) tool description.

Alternatively, you can read variant file names from a text file. The files must
be specified with full path names, separated by spaces, and listed on a single
line. For example, to read a list of files from dir_output.txt as the argument
for the --variants option:

 --variants `cat dir_output.txt`

Note that the argument is enclosed with backticks rather than single quotes.
--variant-listing
 <previous_output>

The full or relative path to a file containing the output of another listvariants
run, to be merged in to produce the output of this run.

--list-long-variants List longer variants (10's of bases) in addition to listing short variants by
concatenating nearby calls.

Input Files
listvariants takes a reference CRR file of the appropriate build and a set of two or more Complete
Genomics variations files (var-[ASM-ID].tsv.bz2) or masterVar file (masterVarBeta-[ASM-ID].tsv.bz2)
as input. These files may be in uncompressed or compressed (.bz2) form. In addition, you can filter the
input files to turn selected calls into no-calls, as described for varfilter (beta).

Output Files
The listvariants output file retains the external reference (xRef) annotations present in the input variant
file. Figure 21 shows an example of the listvariants output; the columns are described in Table 11.

Figure 21: Example listvariants Output

Table 11: Column Descriptions for listvariants Output

 Column Name Description
1 variantId Sequential ID assigned to each variant.
2 chromosome The chromosome of the variant.
3 begin Zero-based reference offset of the beginning of the variant.
4 end Zero-based reference offset of the end of the variant.
5 varType The varType as extracted from the variant file.
6 reference The reference sequence.
7 alleleSeq The variant allele sequence as extracted from the variant file.
8 xRef The xRef as extracted from the variant file.

variantId chromosome begin end varType reference alleleSeq xRef

1034 chr1 972803 972804 snp T C dbsnp:rs3128102

1035 chr1 972856 972857 snp T C dbsnp:rs10267

1036 chr1 975024 975025 snp G T

1037 chr1 975128 975129 snp C T dbsnp:rs2275813

1038 chr1 975311 975313 sub GG A dbsnp:rs56255212

1039 chr1 975322 975323 snp T C dbsnp:rs2275811

1040 chr1 975371 975372 snp G A

1041 chr1 975900 975901 snp G A

Genome Comparison Tools listvariants (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 50

Examples

List Multiple Genomes on the Command Line

This command creates a file called listvariants_YRI_trio.tsv that contains the variants present in
the NA19238, NA19239, and NA19240 genomes.
cgatools listvariants \
--beta \
--reference /complete/build37.crr \
--output /complete/listvariants_YRI_trio.tsv \
--variants \
/complete/GS19238-1100-37-ASM/GS00028-DNA_A01/ASM/var-GS19238-1100-37-ASM.tsv.bz2 \
/complete/GS19239-1100-37-ASM/GS00028-DNA_B01/ASM/var-GS19239-1100-37-ASM.tsv.bz2 \
/complete/GS19240-1100-37-ASM/GS00028-DNA_C01/ASM/var-GS19240-1100-37-ASM.tsv.bz2

List Multiple Genomes in a Text File

This command creates a file called listvariants_YRI_trio.tsv that contains the variants present in
the NA19238, NA19239, and NA19240 genomes. In this example, the paths to the variation files are
contained in a text file called listvariant_input.txt and the cat command is used to provide the
variations to listvariants. listvariants_input.txt should contain the name and full paths to all input genome
variation files on one line, separated by spaces.

The input file (in this case, listvariant_input.txt) should list the full paths and filenames for all
variant files, separated by spaces, on a single line. For example:
/complete/var-GS19238-1100-37-ASM.tsv.bz2 /complete/var-GS19239-1100-37-ASM.tsv.bz2
/complete/var-GS19240-1100-37-ASM.tsv.bz2

cgatools listvariants \
--beta \
--reference /complete/build37.crr \
--output /complete/listvariants_YRI_trio.tsv \
--variants `cat /complete/listvariants_input.txt`

Important: Make sure to use backticks (`) instead of single quotes.

Genome Comparison Tools testvariants (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 51

testvariants (beta)
Determine which variants are found in which genomes given the results of listvariants. The following
sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Examples

Synopsis
cgatools testvariants --help
 --beta
 --reference <crr_file>
 --input <listvariants_output>
 –-output <output_file>
 --variants <variant_fileA>#<filter1>,<filter2>
--variants <variant_fileB>#<filter1>,<filter2>

Description
The testvariants command tests each of the variants listed by the listvariants (beta) command against a
set of genomes, to determine which variants are found in which genomes. testvariants annotates each
variation in the listvariants file with a flag for each allele of each tested genome to indicate if the variant is
present in that allele.

Note that when comparing only two to three genomes, we recommend using calldiff instead of
testvariants, as calldiff is less sensitive to the canonical alignment.

For more information on the algorithm that testvariants uses to compare variations, see “testvariants
Algorithm” in the Appendix.

Command Line Options

Option Description
-h or --help Print command-line help.
--beta Enables testvariants (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full path to the reference file. You

can use a positional argument to specify the CRR file.
--input <listvariants_output> The listvariants file containing the variants to test for.
--output <output_file> The output file. If this option is omitted, results are sent to STDOUT.
--variants <variant_file>
 #<filter1>,<filter2>

This option can be used once for each input variant file. Files can be
var or masterVar files.

Alternatively, you can read variant file names from a text file. The
files must be specified with full path names, separated by spaces, and
listed on a single line. For example, to read a list of files from
dir_output.txt as the argument for the --variants option:

 --variants `cat dir_output.txt`

Note that the argument is enclosed with backticks rather than single
quotes.

You can specify optional filters to turn selected calls into no-calls,
using the syntax described for the varfilter (beta) tool. The filter
syntax must be specified after each file name.

Genome Comparison Tools testvariants (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 52

Input Files
testvariants takes as input a reference CRR file of the appropriate build, a set of two or more Complete
Genomics variations files (var-[ASM-ID].tsv.bz2) or masterVar file (masterVar-[ASM-ID].tsv.bz2), and a
listvariants output file generated based on the set of variation files to be used in the multi-genome
comparison. These variant files may be in uncompressed or compressed (.bz2) form. In addition, you can
filter the input files to turn selected calls into no-calls, as described for varfilter (beta).

Output Files
testvariants takes a listvariants output file containing the list of variations and appends one additional
column for each genome variation file specified as input. Columns created by testvariants are headed
with the ASM-ID, and contain one comparison flag for each allele in the tested genome. Table 12 lists the
comparison flags.

Table 12: testvariants Flags: possible flags for each allele

Flag Description
0 The variant is not present.
1 The variant is present.
N The genome is no-called at this position.

Figure 22 shows testvariants output when the variations shown in Figure 21 are compared to variation
calls in three genomes, ASM1, ASM2, and ASM3. In this example, ASM1 and ASM3 are homozygous for
variant 1034, but ASM2 is heterozygous. ASM1 does not have variant 1036, ASM2 is heterozygous for the
variant, and ASM3 is no-called at that position.

Note that each line in the testvariants output refers to a specific allele, not a genomic location. For
example, variant 1038 is a 5 bp substitution that partially overlaps variant 1039 (a SNP), and variant
1040 (a deletion).

Table 13 describes the columns used in the example.

Figure 22: testvariants Output against Three Genomes

v
a
r
i
a
n
t
I
d

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

x
R
e
f

A
S
M
1

A
S
M
2

A
S
M
3

1034 chr1 972803 972804 snp T C dbsnp:rs3128102 11 1 11

1035 chr1 972856 972857 snp T C dbsnp:rs10267 11 11 11

1036 chr1 975024 975025 snp G T 0 1 NN

1037 chr1 975128 975129 snp C T dbsnp:rs2275813 0 1 0

1038 chr1 975311 975316 sub GGGGG AAAAA 11 11 NN

1039 chr1 975311 975312 snp G A 1 0 NN

1040 chr1 975313 975316 del GGG 0 1 NN

1041 chr1 975900 975901 snp G A 1N 0 1

Genome Comparison Tools testvariants (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 53

Table 13: Column Descriptions for testvariants Output

 Column Name Description
1 variantId Sequential ID assigned to each variant.
2 chromosome The chromosome of the variant.
3 begin Zero-based reference offset of the beginning of the variant.
4 end Zero-based reference offset of the end of the variant.
5 varType The varType as extracted from the variant file.
6 reference The reference sequence.
7 alleleSeq The variant allele sequence as extracted from the variant file.
8 xRef The xRef as extracted from the variant file.
9+ GSXXXXX-XXXX-XX-ASM Column name corresponds to the sample ASM-ID. Contains one comparison flag

for each allele in the tested genome. Comparison flags are described in Table 12.

Examples
In this example, we determine distribution of variations in the genomes of the Yoruban family trio,
represented by the genomes NA19238, NA19239, and NA19240. This command takes the listvariants-
produced list of all variations present in these genomes (listvariants_YRI_trio.tsv) and produces a
file called testvariants_YRI_trio.tsv that lists the variant genotype for each family member.
Note that in this example, the genomic variations provided to the listvariants and testvariants commands
are identical.
cgatools testvariants \
--beta \
--reference /complete/build37.crr \
--input /complete/listvariants_YRI_trio.tsv \
--output /complete/testvariants_YRI_trio.tsv \
--variants \
/complete/GS19238-1100-37-ASM/GS00028-DNA_A01/ASM/var-GS19238-1100-37-ASM.tsv.bz2 \
/complete/GS19239-1100-37-ASM/GS00028-DNA_B01/ASM/var-GS19239-1100-37-ASM.tsv.bz2 \
/complete/GS19240-1100-37-ASM/GS00028-DNA_C01/ASM/var-GS19240-1100-37-ASM.tsv.bz2

Genome Comparison Tools junctiondiff (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 54

junctiondiff (beta)
Identifies junctions present in one genome that are absent from another genome B. The following
sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Examples

Synopsis
cgatools junctiondiff --help
 --beta
 --reference <crr_file>
 --junctionsA <junction_fileA>
 --junctionsB <junction_fileB>
 --scoreThresholdA <thresholdA>
 --scoreThresholdB <thresholdB>
 --distance <arg>
 --minlength <arg>
 --output-prefix <prefix>
 --statout

Description
The junctiondiff tool identifies junctions present in one genome (genome A) that are absent from another
(genome B).

Two junctions are considered equivalent if:

 They come from different files.

 The left and right positions of one junction are not more than 200 bp bases apart from the
corresponding positions of another junction (the distance can be set by the user).

 The number of discordant mate pair alignments (i.e., the number of overlapping DNBs) supporting
each junction is greater than or equal to the specified --scoreThreshold option value.

 They are on the same strands.

For more information, see “junctiondiff Algorithm” in the Appendix.

Command Line Options
Option Description
-h or --help Print command-line help.
--beta Enables junctiondiff (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full path to the reference file. You

can use a positional argument to specify the CRR file.
-a <junction_fileA>
or
--junctionsA <junction_fileA>

Input junction file for genome A.

-b <junction_fileB>
or
--junctionsB <junction_fileB>

Input junction file for genome B.

Genome Comparison Tools junctiondiff (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 55

Option Description
-A <thresholdA>
or
--scoreThresholdA <thresholdA>

The minimum number of discordant mate pair alignments (i.e., the
number of overlapping reads) supporting the junction from genome
A. If omitted, the minimum number defaults to 10.

-B <thresholdA>
or
--scoreThresholdB <thresholdB>

The minimum number of discordant mate pair alignments (i.e., the
number of overlapping reads) supporting the junction from genome
B. If omitted, the minimum number defaults to 0.

-d
or
--distance <arg>

Maximum distance between coordinates of potentially compatible
junctions. If this option is omitted, the maximum distance is 200.

-l
or
--minlength <arg>

Minimum deletion junction length to be included into the difference
file. If this option is omitted, the minimum length defaults to 500.

-o <prefix>
or
--output-prefix <prefix>

The path prefix for all output reports. This prefix can be used
in two ways:

 If a path is specified (for example “/home/myFiles”), report
files are saved to that location.

 If a string is specified (for example “Run20111011”) it is
appended to the start of the filename, and the file will be saved in
the active directory.

-S or --statout (Debug) Report various input file statistics. Experimental feature.

Input Files
junctiondiff takes as input a reference CRR file of the appropriate build and two junctions files for
comparison. It accepts both the allJunctionsBeta and highConfidenceJunctionsBeta files that are
generated from the Complete Genomics Structural Variation pipeline.

Output Files
junctiondiff creates an output file named diff-input<file_nameA>. This file contains the a list of the
junctions from input file A that are not present in input file B. The output format is the same as the
standard junctions file format, used in both the allJunctionsBeta and highConfidenceJunctionsBeta
files.

If the --statout flag is used, junctiondiff generates a brief summary report (report.tsv).

Examples

Basic junctiondiff Operation

This command produces the junctions in the Yoruban NA19240 genome that are not present in her
mother, NA19238.
cgatools junctiondiff \
--beta \
--reference /complete/build37.crr \
-a /complete/GS19240-1100-37-ASM/GS00028-DNA_C01/ASM/allJunctionsBeta-GS19240-1100-37-ASM.tsv
-b /complete/GS19238-1100-37-ASM/GS00028-DNA_A01/ASM/allJunctionsBeta-GS19238-1100-37-ASM.tsv

Genome Comparison Tools junctiondiff (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 56

junctiondiff Applied Iteratively to Multiple Genomes

junctiondiff can be run iteratively. The following command uses the output from the previous example as
the input junction file A, and produces a list of the junctions in the Yoruban NA19240 genome that are not
present in her mother, NA19238 or father, NA19239.
cgatools junctiondiff \
--beta \
--reference /complete/build37.crr \
-a /complete/diff-allJunctionsBeta-GS19240-1100-37-ASM.tsv \
-b /complete/GS19239-1100-37-ASM/GS00028-DNA_B01/ASM/var-GS19239-1100-37-ASM.tsv.bz2

SAM Conversion Tools

© Complete Genomics, Inc. CGA Tools User Guide — 57

SAM Conversion Tools

CGA Tools provides SAM-format conversion tools to facilitate downstream analysis and visualization, for
example using the IGV genome browser.

Complete Genomics reads are initially mapped to the reference genome using a fast algorithm, and these
initial mappings are later expanded and refined by local de novo assembly applied to putatively variant
regions of the genome. The local de novo assembly identifies the most likely alleles for a variation interval
(small region of the genome, less than 200 bases), and is followed by an optimization process that refines
the allele choices. The mappings generated by the local de novo assembly and optimization process
provide support for the called variations. Complete Genomics reads and their initial mappings to the
reference genome are located in the MAP folder. The mappings generated by the local de novo assembly
process (and their associated reads) are located in the EVIDENCE folder.

CGA Tools evidence2sam converts the additional mappings generated by local de novo assembly to
SAM format. For pipelines that require reads and mappings in BAM format, the output of evidence2sam
can be sent to standard output, and processed by SAM Tools.

 (beta)

Understanding Complete Genomics read structure and the differences between the initial mappings and
evidence mappings is critical for proper use of evidence2sam. For more information, consult the Data File
Formats document.

Complete Genomics calculates mapping quality in a very different manner to most other mapping tools.
Some variant calling tools that take SAM/BAM files as input will expect the mapping quality scores to be
different to those present for Complete Genomics reads and mappings, and may not call variants with the
same accuracy as they would from native SAM/BAM files.

SAM Conversion Tools evidence2sam (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 58

evidence2sam (beta)
Converts Complete Genomics evidence mappings to the SAM format. The following sections describe its
behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Examples

Synopsis
cgatools evidence2sam --help
 --beta
 --evidence-dnbs <evidence_file>
 –-output <sam_file>
 --reference <crr_file>
 --extract-genomic-region <arg>
 --keep-duplicates
 --add-allele-id

--skip-not-mapped
 --add-mate-sequence

--mate-sv-candidates
--add-unmapped-mate-info
--primary-mappings-only
--consistent-mapping-range <arg>

Description
The evidence2sam tool converts Complete Genomics evidence mappings (located in the EVIDENCE
folder) to the SAM format. For pipelines that require reads and mappings in BAM format, the output of
evidence2sam can be sent to standard output, and processed by SAM Tools.

Important: evidence2sam does not convert the initial mappings (located in the MAP folder) to the SAM
format.

Command Line Options

Option Description
-h or --help Prints command-line help.
--beta Enables evidence2sam (currently beta-level).
-e <evidence_file>
or
--evidence-dnbs <evidence_file>

Full or relative path to the evidenceDnbs file
(evidenceDnbs-[ASM-ID].tsv.bz2).

-o <sam_file>
or
--output <sam_file>

Specifies the full or relative path to the output SAM file. If this option
is omitted, results are sent to STDOUT.

-s <crr_file>
or
--reference <crr_file>

Specifies the reference CRR file. Specify the full path to the reference
file. You can use a positional argument to specify the CRR file.

-r <arg>
or
--extract-genomic-region <arg>

Indicates the genomic coordinates that are converted to SAM, to
avoid converting the entire file. Specify the region as a half-open
interval chr,from,to. For example:

--extract-genomic-region chrX,15203639,15412498

SAM Conversion Tools evidence2sam (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 59

Option Description
--keep-duplicates Keeps local duplicates of DNB mappings. All the output SAM records

will be marked as “not primary” if this option is used.
--add-allele-id Generates interval ID (ZI:I) and allele ID (ZA:I) tags.
--skip-not-mapped Does not output reads with no mappings.
--add-mate-sequence Generates mate sequence (R2) and score (Q2) tags.
--mate-sv-candidates Enables mating unique single arm mappings in SAM. Inconsistent

mappings are normally converted as single arm mappings with no
mate information provided. If this option is used, evidence2sam will
mate unique single arm mappings in SAM including those on
different stands and chromosomes. The tag "XS:i:1" is used to
distinguish these "artificially" mated records. The MAPQ provided for
these records is a single arm mapping weight

--add-unmapped-mate-info Generates R2 and Q2 tags (as does --add-mate-sequence), but is
applied to inconsistent mappings only.

--primary-mappings-only Reports only the highest probability mapping for each read.
--consistent-mapping-range <arg> Limits the maximum distance between consistent mates. If this flag is

not provided, the default value is set to 1300 bp.

Input Files
evidence2sam takes as input the chromosome specific evidence DNB files, located in the ASM/EVIDENCE
directory and a reference CRR file of the appropriate build.

Output Files
The evidence2sam converter takes one evidence mapping file (evidenceDnbs-[ASM-ID].tsv.bz2) as input
and generates one SAM file as output. Each evidence mapping record from the input file is converted into
a pair of corresponding SAM records, one record for each mate of a mate-pair read. Negative gaps in
Complete Genomics mappings are removed from the reads and stored separately using GS/GQ/GC tags.

If evidence2sam is run with the --add-allele-id option, the optional ZA:I and ZI:I tags are used to
store the allele number and evidence interval ID from the evidenceDnbs file, respectively. When run with
the --add-mate-sequence flag, evidence2sam produces the SAM Tools R2 and Q2 tags for mate
sequence and quality scores.

By default, evidence2sam de-duplicates duplicated DNB mappings, selecting the “best” mapping. Using
the --keep-duplicates flag overrides this behavior, and causes all output SAM records to be marked
as “not primary”.

For more information on the SAM output format, CIGAR string information, and the algorithm used to de-
duplicate and select primary mappings, see “Representation of the Complete Genomics Data in SAM
Output Format” in the Appendix.

Examples
This command pipeline uses evidence2sam to convert one evidenceDnbs file to SAM format. The output
is then piped directly to SAM Tools to create an indexed, reference-sorted BAM file. This pipeline requires
that SAM Tools be installed on your system and available from the location where this command is run.
Note that the filename “result” (underlined below) is an arbitrary name of your choosing. However, it
does need to be consistent between the SAM Tools sort and index commands.

cgatools evidence2sam \
--beta \
-e /GS19240-1100-36-ASM/GS0028-DNA_C01/ASM/EVIDENCE/evidenceDnbs-chr10-GS19240-1100-36-ASM.tsv.bz2 \
--reference /complete/build37.crr | \
samtools view -uS - | \
samtools sort - result && samtools index result.bam

VCF Conversion Tool mkvcf (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 60

VCF Conversion Tool

mkvcf (beta)
Translates small variant, copy number variation (CNV), structural variation (SV), and/or mobile element
insertion (MEI) calls and annotations from one or more Complete Genomics genome assemblies into a
single VCF-formatted file. We recommend that you run this tool for multi-genome comparisons of
variations called using Complete Genomics Analysis Pipeline 2.0 and later versions. mkvcf is used to
generate the vcfBeta file that is delivered with Complete Genomics data starting in Analysis Pipeline 2.2.

The following sections describe its behavior:

Synopsis

Description

Command Line Options

Input Files

Output Files

Examples
Field Tags

Synopsis
cgatools mkvcf --help
 --beta
 --reference <crr_file>
 --output <output_file>
 --field-names <list>
 --source-names <list>
 --genome-root <directory>
 --master-var <masterVar file>
 --include-no-calls
 --calibration-root <arg>
 --junction-file <junctions_file>
 --junction-score-threshold <arg>
 --junction-side-length-threshold <arg>
 --junction-distance-tolerance <arg>
 --junction-length-threshold
 --junction-normal-priority
 --junction-tumor-hc

Description
The mkvcf tool translates variant calls, including annotations and scores from one or more Complete
Genomics genome assemblies, to a single VCF-formatted file. Thus mkvcf can be used for multigenome
comparisons of variant calls. The number of genomes that can be compared and the data sources
required to run mkvcf vary by variant type, as described in “Input Files.”

Complete Genomics uses a variety of proprietary tags in the VCF file to fully capture the richness of our
variant calls, annotations, and scores. These are fully described in “Field Tags.” For more information on
the algorithm that mkvcf uses to compare variations, see “mkvcf Translation Details” in the appendix.

Analysis Pipeline Version Effects

mkvcf is fully compatible with data generated using Complete Genomics Analysis Pipeline version 2.0 and
later. mkvcf has limited backwards compatibility when generating single-genome VCFs. This varies by
variant type and is summarized in “Input Files.” mkvcf does not support multi-genome comparison of
genomes analyzed on Analysis Pipelines pre-2.0.

VCF Conversion Tool mkvcf (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 61

In CGA Tools version1.7, mkvcf output for paired-sample LAF measurements (produced by the Cancer
Sequencing Service) now uses the CGA_LAFP, CGA_ULAFP, and CGA_LLAFP tags, as introduced in Analysis
Pipeline version 2.4.

Data Structure Requirement

Use of the mkvcf --genome-root flag requires input files to be located in the directory hierarchy in
which the data package was originally delivered by Complete Genomics.

Command Line Options

Option Description
-h or --help Print command-line help.
--beta Enables mkvcf (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full path to the reference file.
--output <output_file> Full or relative path to the output file. If this option is omitted,

results are sent to STDOUT.
--field-names <list> Comma-separated list of format fields to include in the output. If

this option is omitted, all fields are included. For a description of
each field, see “Field Tags.

 masterVar-related fields:

” Available fields, organized by source
type, are:

GT,PS,NS,AN,AC,SS,FT,CGA_XR,CGA_FI,GQ,HQ,EHQ,CGA_CEHQ,
GL,CGA_CEGL,DP,AD,CGA_RDP,CGA_ODP,CGA_OAD,CGA_ORDP,
CGA_PFAM,CGA_MIRB,CGA_RPT,CGA_SDO,CGA_SOMC,
CGA_SOMR,CGA_SOMS,CGA_SOMF,AF,CGA_ALTCALLS

 CNV-related fields:
GT,CGA_GP,CGA_NP,CGA_CP,CGA_PS,CGA_CT,CGA_TS,CGA_CL,
CGA_LS,CGA_SCL,CGA_SLS,CGA_LAFS,CGA_LLAFS,CGA_ULAFS,C
GA_LAFP,CGA_LLAFP,CGA_ULAFP

 MEI-related fields:
GT,FT,CGA_IS,CGA_IDC,CGA_IDCL,CGA_IDCR,CGA_RDC,
CGA_NBET,CGA_ETS,CGA_KES

 SV-related fields:
GT,FT,CGA_BF,CGA_MEDEL,MATEID,SVTYPE,CGA_BNDG,
CGA_BNDGO,CGA_BNDMPC,CGA_BNDPOS,CGA_BNDDEF,
CGA_BNDP

SV-ALL may be specified as shorthand for all SV-related fields.
--source-names <list> Comma-separated list of variant source names. If this option is

omitted, all source names are included. The following source
names are available:
 masterVar: Includes records from the masterVar file.
 CNV: Includes CNV-related records.
 SV: Includes records derived from junctions files.
 MEI: Includes records describing mobile element insertions.

Some of these source types are only available for more recent
pipeline versions, and some of these source types do not support
multi-genome VCFs. For more information about which source
types are available for which versions of the Complete Genomics
pipeline software, see “Input Files.”

VCF Conversion Tool mkvcf (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 62

Option Description
--genome-root <directory> The genome root directory that contains the ASM/REF and

ASM/EVIDENCE subdirectories. For example:

/data/GS00118-DNA_A01

You must supply this option for each genome in the VCF, unless
you are using --source-names=masterVar and you have
specified the --master-var option for each genome in the VCF,
or you are using --source-names=SV and have specified
--junction-file for each input genome.

--master-var <masterVar file> For each genome to include in the VCF, the masterVar file. If
--genome-root parameter is given, this parameter defaults to
the masterVar in the given genome-root. If the number of
genomes specified via --genome-root is non-zero, then the
number of masterVar specifications must be either 0 or the same
as the number of genomes.

The order of masterVar files should correspond to that of
genome roots.

--include-no-calls Include small variants VCF records for loci that are no-called
across all input genomes.

Note that no-calls in small variant loci with at least one called
allele across input genomes are always output.

--calibration-root <arg> The directory containing score calibration data. The directory
should contain directories version0.0.0 and version2.0.0.
For example:

 /home/complete/var-calibration-v1

This option is only required if CGA_CEHQ or CGA_CEGL are
included in the --field-names parameter.

--junction-file <junctions_file> For each genome to include in the VCF, the junctions file. If
--genome-root parameter is given, this parameter defaults to
the junctions file in the given genome root. If the number of
genomes specified via --genome-root is non-zero, then the
number of junction files must be either 0 or the same as the
number of genomes.

The order of junction files should correspond to that of genome
roots.

--junction-score-threshold <arg> Minimum number of discordant mate pairs for a junction that is
required to be labeled as PASS in the FT record.

If this option is omitted, the default is 10.
--junction-side-length-threshold
<arg>

Minimum “junction side length” for a reported junction that is
required to be labeled as PASS in the FT record.

If this option is omitted, the default is 70 bp.
--junction-distance-tolerance
<arg>

Maximum allowed distance between junctions considered to
match (i.e. potentially reflect the same evolutionary event).

If this option is omitted, the default is 200 bp.
--junction-length-threshold

Minimum length between breakpoints required to call an
intrachromosomal junction.

If this option is omitted, the minimum length defaults to 500 bp.

VCF Conversion Tool mkvcf (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 63

Option Description
--junction-normal-priority Normal junction priority for VCF output. Should be used only

when comparing two genomes, a tumor and its matched normal.

If this switch is present, then each cluster of compatible junctions
will be represented by the junction from the normal genome (the
first one in the list of genomes). Otherwise it might represented
by either normal or tumor junction.

--junction-tumor-hc Output only high confidence junctions from the second of two
genomes. Useful as a means of identifying a set of high-confidence
somatic junctions.

Input Files
Table 14 lists the input files required to convert each class of variant calls, the version compatiblity for
single- and multi-genome conversion, and constraints on how many genomes can be processed at one
time. Files may be specified implicitly, via the --genome-root parameter, or in some cases explicitly,
via the --master-var and/or --junction-file parameters.

Table 14: Variant Comparison Constraints

Variant
Type

Number of
Genomes That
Can Be
Specified

Required Input File Types Analysis Pipeline
Compatibility:
Single-Genome VCF
Conversion

Analysis Pipeline
Compatibility:
Multi-Genome VCF
Conversion

MEI One genome mobileElementInsertionsBeta* Version 1.12.0 and later Version 2.0.0 and later
SV Two genomes allJunctions* or

highConfidenceJunctions*
Version 1.10.0 and later Version 2.0.0 and later

CNV Any number of
genomes

cnvDetails* and/or
somaticCnvDetails*

Version 2.0.0 and later Version 2.0.0 and later

Small
Variants

Any number of
genomes

masterVar* or var* Version 1.12.0 and later.
Also compatible with
masterVar files generated
from pre-1.12 data using
generatemasterVar (beta)

Version 2.0.0 and later

Output Files
mkvcf produces a single file in the VCF 4.1 format, regardless of number of genomes in the input. If
--output is used to provide a file name, output will be written to that file; otherwise, output will be
written to STDOUT.

Running mkvcf without specifying specific field names (via the --field-names flag) results in mkvcf
including all tags by default. For small variants, this includes tags such as CGA_CEGL, that provide
calibrated scores (for more information see Complete Genomics Small Variant Score Calibration
Methods). To properly compute the calibrated scores, mkvcf needs access to version 2 of the calibrated
score files.

VCF Conversion Tool mkvcf (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 64

Examples

Produce a single genome VCF, including small variants, CNVs, SVs, and MEIs

Suppose you want to convert all types of variant calls for a single genome into a VCF file, where the top-
level directory for the genome is /data/GS00118-DNA_A01. You can do this as follows:
cgatools mkvcf \
--beta \
--genome-root /data/GS00118-DNA_A01 \
--source-names masterVar,SV,MEI,CNV \
--reference /home/complete/data/ref/build37.crr \
--output GS00118-DNA_A01.vcf

Produce a two-genome VCF including small variants, CNVs, and SVs

Suppose you want to create a VCF for a tumor/normal comparison that includes small variants, CNVs,
and SVs. The top-level directories for the genomes are each in the /data directory. You can do this as
follows:
cgatools mkvcf \
--beta \
--genome-root /data/GS00118-DNA_A01 \
--genome-root /data/GS00122-DNA_D06 \
--source-names masterVar,SV,CNV \
--reference /home/complete/data/ref/build37.crr \
--output tumor_normal.vcf

Note that where the goal is the identification of somatic changes between a tumor and a normal, the
baseline genome (typically, normal) for the identification of somatic changes should be specified first and
the derived/non-baseline genome (typically, tumor) should be specified second. This ensures correct
behavior of the --junction-normal-priority and --junction-tumor-hc flags.

Produce a four-genome VCF including small variants and CNV

Suppose you want to create a VCF for four separate genomes that includes small variants and CNVs. The
top-level directories for the genomes are each in the /data directory. You can do this as follows:
cgatools mkvcf \
--beta \
--genome-root /data/GS00118-DNA_A01 \
--genome-root /data/GS00122-DNA_B03 \
--genome-root /data/GS00122-DNA_D05 \
--genome-root /data/GS00122-DNA_E02 \
--source-names masterVar,CNV \
--reference /home/complete/data/ref/build37.crr \
--output four_genome.vcf

Field Tags
Information about each variant type is sourced from different files (see --source-names parameter
description) and described using different field tags. Most tags apply to only one source, but a few apply
to two or more. The field tags output by mkvcf are described in the somaticVcfBeta file section of the
Complete Genomics Cancer Sequencing Service Data File Formats document.

Master Variation File Format Conversion Tool generatemasterVar (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 65

Master Variation File Format Conversion Tool

generatemasterVar (beta)
Produces an integrated master variation file to report the variant calls and annotation information
produced by the Complete Genomics assembly process. Note that a masterVar file is delivered with
Complete Genomics data after the Assembly Software version 1.12.

The following sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools generatemastervar --help
 --beta
 --reference <crr_file>
 --output <mastervar_file>
 --variants <variant_file>
 --annotations <annotation_list>
 --genome-root <directory>
 --repmask-data <repeatmask_data>
 --segdup-data <seg_dup_file>

Description
The generatemasterVar tool produces an integrated master variation file (masterVarBeta) to report the
variant calls and annotation information produced by the Complete Genomics assembly process. Unlike
the var file, the 2 alleles for each locus are reported as one record, simplifying data processing. With the
release of Complete Genomics assembly software version 1.12, the masterVarBeta-[ASM-ID].tsv.bz2 file
became a standard deliverable, located in the ASM subfolder of each genome assembly. The
generatemasterVar tool included in CGA Tools enables the generation of masterVarBeta from genomes
assembled using earlier releases of the assembly software. The file format is derived heavily from the
existing variation file format and can be used with all CGA Tools commands anywhere a variation file is
expected. A detailed description of the masterVarBeta file format can be found in Complete Genomics
Data File Formats documents.

Analysis Pipeline Version Effects

The masterVarBeta files produced by Analysis Pipeline version 2.4 include new information including
single-sample LAF measurements, allele frequencies reported in dbSNP, ambiguous calls, a new somatic
score (fisherSomatic), and changes to the variant flagging system. generatemastervar in CGA Tools
version 1.7 will output files using the format adopted in Analysis Pipeline version 2.4, irrespective of the
original analysis pipeline used to analyze the input genomes. For example, variant quality filters will be
provided in alleleXVarFilter columns instead of the varQuality or somaticQuality columns. The output files
will also contain new columns introduced in Analysis Pipeline version 2.4 (such as alleleXFreq and
alleleXAlternativeCalls) though these columns will be empty if the input files were analyzed on Analysis
Pipelines pre-2.4.

generatemastervar can output the fisherSomatic score (a score introduced in Analysis Pipeline
version 2.4 that measures confidence in called somatic variants, complementing somaticScore) and the

Master Variation File Format Conversion Tool generatemasterVar (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 66

FET30 flag (which indicates lower confidence in the somatic call). These cancer-related features require
the source genome to have been sequence using the Complete Genomics Cancer Sequencing Service.

Analysis Pipeline version 2.0 includes both diploid and non-diploid model CNV calls. generatemasterVar
can process either or both types of calls if this data is available as specified using the CNV parameter of
the --annotations option. For data generated with Analysis Pipeline versions 1.10, 1.11, and 1.12,
generatemasterVar processes a single value: you specify either diploid model (normal CNV processing)
CNV calls or non-diploid model (tumor CNV processing) using the CNV Diploid and CNV Nondiploid
parameters of the --annotations option. If neither diploid nor non-diploid model data is available,
such as is the case with the Analysis Pipeline version 1.8 and earlier, and any of the CNV parameters is
specified, generatemasterVar will produce an error.

Data Structure Requirement

The generatemastervar tool requires input files to be located in the directory hierarchy in which the data
package was originally delivered by Complete Genomics.

Command Line Options
Option Description
-h or --help Print command-line help.
--beta Enables generatemasterVar (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full path to the reference file.

You can use a positional argument to specify the CRR file.
--output <mastervar_file> Full or relative path to the output masterVar file. If this option is

omitted, results are sent to STDOUT.
--variants <variant_file> Full or relative path to the input variant file.
--annotations <annotation_list> Comma-separated list of annotations to add to each line. Possible

annotation values are: copy, evidence, gene, ncrna, repeat,
segdup, cnv, cnvDiploid, or cnvNondiploid. See Table 15
for more information.

--genome-root <directory> The genome directory that contains an intact ASM subdirectory.
For example: /data/GS00118-DNA_A01.

--repmask-data <repeatmask_data> Full or relative path to the file that contains repeat masker data.
--segdup-data <seg_dup_file> Full or relative path to the file that contains segmental duplications

data.

Input Files
generatemasterVar merges the variant calls in the var file with annotations from a variety of sources.
Table 15 lists all required and optional generatemasterVar annotation source files, and provides
information on where certain annotation source files can be obtained. These files do not need to be
explicitly specified but are inferred from the list of annotations in the --annotations option.

Table 15: Variant and Annotation Data Sources

Source Description
var* or
masterVarBeta*

Source of variant calls, and external reference (xRef) annotations. Data is copied from the
input file. If the input file is the variation file (var-[ASM-ID].tsv.bz2), the xRef data is re-
formatted to a semicolon-delimited list of all xRef annotations for all alleles of the locus. If the
input file is the master variations file (masterVar-[ASM-ID].tsv.bz2), its annotation columns
are simply copied to the output.

evidence Data from Complete Genomics evidence files.
gene Data from the Complete Genomics gene annotation file (gene-[ASM-ID].tsv.bz2).

Master Variation File Format Conversion Tool generatemasterVar (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 67

Source Description
ncRNA Data from the Complete Genomics non-coding RNA annotation file (ncRNA-[ASM-

ID].tsv.bz2).
repeat RepeatMasker information. Specify the RepeatMasker annotation data file with the

--repmask-data option.

The data is derived from the RepeatMasker table available from the UCSC genome browser
website or on Complete Genomics’ FTP site. See “Obtaining Ancillary Files for Use with CGA
Tools” for download instructions.

segdup Information about segmental duplications. Specify the segmental duplication data file with
the --segdup-data option. The data is derived from the Segmental Duplications table
available from the UCSC genome browser website or on Complete Genomics’ FTP site. See
“Obtaining Ancillary Files for Use with CGA Tools” for download instructions.

cnv Information about the CNV calls made by the Complete Genomics pipeline for the region that
covers this locus. If the genome package was generated by the Analysis Pipeline version 2.0,
both the diploid model and non-diploid model CNV calls will be added as columns.

If the genome package was generated by Analysis Pipeline versions 1.10, 1.11, and 1.12,
either diploid model (normal CNV processing) CNV calls or non-diploid model (tumor CNV
processing) CNV calls are added when CNV is specified. For these pipeline releases, only one
of the two CNV values is produced. If neither is available, such as is the case with the Analysis
Pipeline version 1.8 and earlier, generatemasterVar will produce an error.

cnvDiploid Information about the diploid model CNV calls (calledPloidy and relativeCoverageDiploid)
made by the Complete Genomics pipeline for the region that covers this locus.

Note that this information is only available in genome packages generated by the Analysis
Pipeline version 2.0 or later.

cnvNondiploid Information about the non-diploid model CNV calls (calledLevel, relativeCoverageNondiploid,
and, if available, bestLAFsingle, lowLAFsingle, and highLAFsingle) made by the Complete
Genomics pipeline for the region that covers this locus.

Note that this annotation option is only available in genome packages generated by the
Analysis Pipeline version 2.0 or later. LAFsingle-related information is only available for
version 2.4 or later.

cnvSomNondiploid Information about the non-diploid somatic CNV calls (somaticCalledLevel,
relativeCoverageSomaticNondiploid, bestLAFpaired, lowLAFpaired, and highLAFpaired) made
by the Complete Genomics pipeline for the region that covers this locus.

Note that this option is only available in genome packages produced with the Cancer
Sequencing Service.

fisherSomatic Provides the fisherSomatic score – a score measuring the confidence in called somatic
variants introduced in Analysis Pipeline version 2.4. The score is computed using a one-
tailed Fisher's Exact Test on counts of reads supporting alt and reference alleles in the
baseline (usually matched normal) and non-baseline (usually tumor) samples. The given
score is intended to have a Phred-like interpretation of -10*log10(probability of an
erroneous call), though details of the count tabulation make the intended calibration only
approximate.

Note that this option is only available in genome packages produced with the Cancer
Sequencing Service.

Master Variation File Format Conversion Tool generatemasterVar (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 68

Output Files
A detailed description of the masterVar file format that is created by generatemasterVar, including
example output, can be found in the Complete Genomics Data File Formats document.

The masterVar file format is convenient for manipulating Complete Genomics data with tools outside the
CGA Tools package. For the masterVar file to maintain compatibility with CGA Tools, the following rules
must be followed:

1. Header line TYPE must be preserved as is. It is recommended, but not required, that header values
are also preserved.

2. Every locus data line must contain the same set of columns. The column header line (starting with a
“>” character) must be present and must contain the same number of columns as the rest of the file.

3. Order of lines must remain intact. The loci in the file are sorted in the order of the reference.

4. The values of the mandatory columns must not be modified and columns themselves must not be
removed. In particular, loci may not be split or merged.

Example
Here we generate masterVar from the NA19240 var file.
cgatools generatemastervar \
--beta \
--reference /ref/build37.crr \
--output mastervar-GS19240-1100-37-ASM.tsv \
--variants /GS19240-1100-37-ASM/GS00028-DNA_C01/ASM/var-GS19240-1100-37-ASM.tsv.bz2 \
--annotations copy,evidence,gene,ncrna,repeat,segdup,cnv \
--genome-root /GS19240-1100-37-ASM/GS00028-DNA_C01 \
--repmask-data /ref/rmsk37.tsv.gz \
--segdup-data /ref/segdup37.tsv.gz

Filtering and Annotation Tools

© Complete Genomics, Inc. CGA Tools User Guide — 69

Filtering and Annotation Tools

Most files used as input or output for CGA Tools are simple tab-delimited files that can be interpreted as
tables. As such, CGA Tools provides tools that manipulate the files as tables.

 varfilter (beta)
 join (beta)
 junctions2events (beta)

Filtering and Annotation Tools varfilter (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 70

varfilter (beta)
Filters the content of var or masterVarBeta files based on one or more call selectors. The following
sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools varfilter --help
 --beta
 --reference <crr_file>
 --input <variant_file>#<filter1>,<filter2>
 --output <output_file>

Description
The varfilter command applies filters to turn selected calls in var or masterVarBeta files into no-calls.
For example, filters can be applied to low quality calls in a var or masterVarBeta file to turn them into
no-calls. Filtering variants before performing genome comparison analyses may be desirable to limit
comparisons to only interesting or high quality variants.

Note that variant filtering of var or masterVarBeta input files is enabled for all CGA Tools that use these
input files, such as calldiff, snpdiff, and listvariants/testvariants. Thus, you need not run the varfilter tool
separately to generate a filtered input file for downstream analysis.

You construct a filter by listing one or more of the call selectors outlined in Table 16, separated by colons.
The call selectors are the only fields available for filtering. You can create complex filtering criteria by
applying more than one filter to the input file: specify multiple filters by concatenating individual filters
into a comma-separated list.

To specify filters on the varfilter command line, append a “#” sign and the filter or filter list to the input
file. For example, to produce a version of the var file containing only scored snp calls (turning everything
that is not a snp into no-calls) you would use the following file and filter specification:
/path/to/var.tsv.bz2#varType!=snp

Table 16: varfilter Call Selectors

Call Selector Description
hom Selects scored calls in homozygous loci.
het Selects scored calls that are not in homozygous loci.
varType=XX Selects scored calls whose varType is XX, where XX can be one of snp,

ins, del, sub, ref, no-call-rc, no-call-ri, no-call, No-ref, or
PAR-called-in-X.

varScoreVAF<XX Selects calls whose varScoreVAF<XX, where XX is a positive integer
representing the confidence in the call.

varScoreEAF<XX Selects calls whose varScoreEAF<XX, where XX is a positive integer
representing the confidence in the call.

varQuality!=VQHIGH Selects scored calls whose varQuality is not VQHIGH (that is, VQLOW and
empty). Supports samples analyzed using Analysis Pipelines before
version 2.4.

Filtering and Annotation Tools varfilter (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 71

Command Line Options
Option Description
-h or --help Print command-line help.
--beta Enables varfilter (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full or relative path to

the reference file. You can use a positional argument to
specify the CRR file.

--input <filepath>#<filter1>[,<filter2>] Input file and filters to apply. Indicate the full or relative
path to the input file followed by a pound sign (#)
followed by a list of filters, separated by commas. Each
filter can include more than one call selectors separated
by colons.

The call selectors that make up the filters are described in
Table 16.

--output <output_file> Full or relative path to the output file. If this option is
omitted, results are sent to STDOUT.

Input Files
varfilter takes as input a Complete Genomics variant (var-[ASM-ID].tsv.bz2) or master variant file
(masterVarBeta-[ASM-ID].tsv.bz2), and a reference CRR file of the appropriate build.

Output Files
varfilter produces a filtered version of the input files based on the user-specified filters.

Example
Here is an example of the argument for the --input option that filters out homozygous SNPs with
varScoreVAF < 25 and heterozygous insertions with varScoreEAF < 50.

Syntax Note: Special characters in the command line must be escaped as shown in this example.
cgatools varfilter \
--beta \
--reference /home/complete/build37.crr \
--input /GS19240-1100-37-ASM/GS00028-DNA_C01/ASM/ \
var-GS19240-1100-37-ASM.tsv.bz2#hom:varType=snp:varScoreVAF\<25, \
het:varType=ins:varScoreEAF\<50 \
--output var-GS19240-1100-37-ASM_filtered.tsv

Filtering and Annotation Tools join (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 72

join (beta)
Merges the results of two delimited input files. The following sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools join --help
 --beta
 --input <file1> <file2>
 --output <output_file>
 –-match <specification>
 --overlap <overlap_spec>
 --output-mode <arg>
 --overlap-mode <arg>
 --select <output_fields>
 --always-dump
 --overlap-fraction-A <fraction>
 --boundary-uncertainty-A <arg>
 --overlap-fraction-B <arg>
 --boundary-uncertainty-B <arg>

Description
The join tool works like a database join to merge the results of two delimited input files. It can be used,
for example, to annotate the variant file with your own set of annotations.

By default, an output record is produced for each match found between file A and file B, but output
format can be controlled by the --output-mode option.

The limitation of the join tool is that file B must fit into memory.

Command Line Options
Option Description
-h or --help Print command-line help.
--beta Enables join (currently beta-level).
--input <fileA> <fileB>
 or
--input <fileB>

Full or relative path names to the files used as input: there must be
exactly two input files to join. If only one file is specified by name,
file A is taken to be standard in and file B is the named file. File B is
read fully into memory, and file A is streamed.
Columns from file A appear first in the output.

--output <output_file> Full or relative path to the output file. If this option is omitted,
results are sent to STDOUT.

--match <match_spec> A match specification: column name from file A followed by a
colon, then column name from file B. For example:

--match begin:begin

Specify additional --match options on the command line to pair
additional columns.

Filtering and Annotation Tools join (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 73

Option Description
--overlap <overlap_spec> Overlap specification: range definition for files A and B, separated

by a colon. A range definition can be:
 Two columns (indicated by the column names), in which case

they are interpreted as the beginning and end of the range.
 One column, in which case the range is defined as the 1-base

range starting at the given value.

The records from the two files must overlap in order to be
considered for output. Two ranges are considered to overlap if the
criteria specified by the --overlap-mode option are met. For
additional specificity, use multiple overlap fields in the same
command.

-m <arg>
 or
--output-mode <arg>

Output mode. The argument is one of the following:
 full: Print an output record for each match found between

file A and file B.
 compact: Print at most one record for each record of file A,

joining the file B values by a semicolon and suppressing
repeated B values and empty B values.

 compact-pct: Same as compact, but for each distinct B
value, annotate with the percentage of the A record that is
overlapped by B records with that B value. Percentage is
rounded up to nearest integer.

--overlap-mode <arg> Overlap mode. The argument is one of the following:
 strict: (Default) Range A and B overlap if A.begin < B.end

and B.begin < A.end.
 allow-abutting-points: Range A and B overlap they meet

the strict requirements, or if A.begin <= B.end and B.begin <=
A.end and either A or B has zero length.

--select <output_fields> Specifies the set of fields to select for output. Indicate the source
file followed by a period followed by the field name for each field;
separate multiple files with commas. For example:

a.locus,a.ploidy,a.varType,b.region
-a
or
--always-dump

Include every record of A in the output, even if there are no
matches with file B.

--overlap-fraction-A <fraction> Minimum fraction of A region overlap for filtering output. If this
option is omitted, the A overlap fraction defaults to 0.

--boundary-uncertainty-A <arg> Boundary uncertainty for overlap filtering. Specifically, records
failing the following boundary uncertainty calculation are not
included in the output:

overlap length >= overlap-fraction-A
 * (A-range-length
 - boundary-uncertainty-A)

If this option is omitted, the boundary uncertainty defaults to 0.
--overlap-fraction-B <arg> Minimum fraction of B region overlap for filtering output. If this

option is omitted, the B overlap fraction defaults to 0.
--boundary-uncertainty-B <arg> Boundary uncertainty for overlap filtering. Specifically, records

failing the following boundary-uncertainty calculation are not
included in the output:

overlap length >= overlap-fraction-B
 * (B-range-length
 - boundary-uncertainty-B)

If this option is omitted, the boundary uncertainty defaults to 0.

Filtering and Annotation Tools join (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 74

Input Files
Two tab delimited text files with column-headers and a set of specifications necessary to determine
overlapping regions between the two files.

Output Files
join Produces a tab-delimited file, based on the content of the two input files, where the overlap criteria
and all specified join parameters have been applied to both input files.

Example

Annotate a Variant File

Suppose that you are interested in two regions of the genome and would like to extract the variants
present in these regions from a Complete Genomics variant file.

For example, suppose you have the following file (file1.tsv):

Figure 23: Example join Input File (file1.tsv)

chromosome begin end region
chr1 13 23 InterestingRegion1
chr2 19 20 InterestingRegion2

Figure 24: Variant File (var.tsv)

>
l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

v
a
r
S
c
o
r
e
V
A
F

v
a
r
S
c
o
r
e
E
A
F

v
a
r
F
i
l
t
e
r

h
a
p
L
i
n
k

x
R
e
f

a
l
l
e
l
e
F
r
e
q

a
l
t
e
r
n
a
t
i
v
e
C
a
l
l
s

1 2 all chr1 0 1 no-call = ?
2 2 all chr1 1 7 ref = =
3 2 1 chr1 7 8 snp C T 87 87 PASS 1 dbsnp:123
3 2 2 chr1 7 8 ref C C 57 57 PASS 2 dbsnp:123
4 2 all chr1 8 13 ref = =
5 2 1 chr1 13 13 ins A 15 36 VQLOW
5 2 2 chr1 13 13 ins A 19 42 VQLOW
6 2 all chr1 13 22 ref = =
7 2 1 chr1 22 24 del AT 60 47 PASS 1
7 2 2 chr1 22 24 ref AT AT 75 55 PASS 2
8 2 all chr1 24 29 ref = =
9 2 1 chr1 29 31 ref CC CC 57 57 PASS 1
9 2 2 chr1 29 31 no-call-ri CC TN 65 65 PASS 2
10 2 all chr1 31 40 ref = =
11 2 1 chr1 40 41 ref G G 129 101 PASS 1
11 2 1 chr1 41 41 ins GG 118 120 PASS 1
11 2 2 chr1 40 41 snp G T 479 479 PASS 2
12 2 all chr1 41 42 ref = =
13 1 all chr2 0 10 ref = =
14 1 1 chr2 10 11 no-call-rc C N 50 47 PASS
15 1 all chr2 11 18 ref = =
16 1 1 chr2 18 20 sub TT CG 102 102 PASS
17 1 all chr2 20 27 ref = =

Filtering and Annotation Tools join (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 75

You can annotate the variant file from Figure 24 as follows:
cgatools join \
--beta \
--input var.tsv file1.tsv \
--overlap begin,end:begin,end \
--select 'a.*,b.region' \
--match chromosome:chromosome

The result is all the records of the variant file that overlapped with your regions of interest, sent to
standard out (no --output option specified), as shown in Figure 23.

Figure 25: join Example Results

To accomplish this, the join tool first reads the annotations file (file B) into memory. Then it streams the
variant file (file A); for each record of file A, it finds the records of file B that match the user-selected
columns or that overlap the record. As a consequence of this implementation, file B must fit into memory,
but file A may be arbitrarily large. Additionally, the output records are in the same order as they are
found in file A.

Annotate calldiff Output with Gene Information

Suppose that you have a SomaticOutput file from calldiff and would like to annotate it with gene
information from a Complete Genomics gene file. Because you would like to match fields from multiple
columns that are present in both files, you could use the following command to create a merged file called
somaticOutputWithGenes.tsv.
cgatools join \
--input /somaticOutputFile.tsv \
--input /GSXXXXX-DNA_C01_1120/ASM/gene-GS0000XXXXX-ASM.tsv.bz2
–-match locus:locus \
--match allele:allele \
--match chromosome:chromosome \
--match varType:varType \
--match reference:reference \
--match begin:begin \
--match end:end \
-–select='a.*,b.*' \
--output somaticOutputWithGenes.tsv

>
l
o
c
u
s

p
l
o
i
d
y

a
l
l
e
l
e

c
h
r
o
m
o
s
o
m
e

b
e
g
i
n

e
n
d

v
a
r
T
y
p
e

r
e
f
e
r
e
n
c
e

a
l
l
e
l
e
S
e
q

v
a
r
S
c
o
r
e
V
A
F

v
a
r
S
c
o
r
e
E
A
F

v
a
r
F
i
l
t
e
r

h
a
p
L
i
n
k

x
R
e
f

a
l
l
e
l
e
F
r
e
q

a
l
t
e
r
n
a
t
i
v
e
C
a
l
l
s

r
e
g
i
o
n

6 2 all chr1 13 22 ref = = InterestingRegion1
7 2 1 chr1 22 24 del AT 60 47 PASS 1 InterestingRegion1
7 2 2 chr1 22 24 ref AT AT 75 55 PASS 2 InterestingRegion1
16 1 1 chr2 18 20 sub TT CG 102 102 PASS InterestingRegion2

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 76

junctions2events (beta)
Groups related junctions and annotates each group with information about the structural rearrangement
(“event”) that these junctions represent. The following sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools junctions2events --help
 --beta
 --reference <crr_file>
 --output-prefix <prefix>
 --junctions <junctions_file>
 --all-junctions <alljunctions_file>
 --repmask-data <repeat_file>
 --gene-data <gene_file>
 --regulatory-region-length <arg>
 --contained-genes-max-range <arg>
 --max-related-junction-distance <arg>
 --max-pairing-distance <arg>
 --max-copy-target-length <arg>
 --max-simple-event-distance <arg>
 --mobile-element-names <arg>
 --max-distance-to-m-e <arg>

Description
Junctions are discontinuities in a sample genome relative to the reference genome. They occur when a
sample genome contains contiguous sequence that is not adjacent and/or in the same orientation in the
reference genome. Structural variations such as duplications, deletions, inversions, and translocations are
represented by one or more junctions. The junctions2events tool groups related junctions and produces
output in which related junctions are annotated with information about the structural rearrangement
(“event”) that these junctions represent.

For more information on how the junctions2events command operates, see “junctions2events Algorithm”
in the Appendix.

Repeat Masker and gene data files necessary to run this command can be downloaded from the Complete
Genomics site. See “Obtaining a Reference Human Genome for Use with CGA Tools” for download
instructions.

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 77

Analysis Pipeline Version Effects

In Complete Genomics Analysis Pipeline version 2.0 and later, the junctions2events tool is run within the
pipeline, and two files, allSvEventsBeta-[ASM-ID].tsv and highConfidenceSvEventsBeta-[ASM-ID].tsv
files are provided as part of the a standard deliverable. These files are located in the SV subfolder within
the ASM directory of each genome assembly. They are differentiated by the list of junctions used as input
to the tool. The junctions2events tool included in CGA Tools enables the generation of allSvEventsBeta
and highConfidenceSvEventsBeta from genomes assembled using earlier releases of the Analysis
Pipeline.

Command Line Options
Option Description
-h or --help Print command-line help.
--beta Enables junction2events (currently beta-level).
--reference <crr_file> The reference CRR file. Specify the full path to the reference

file. You can use a positional argument to specify the CRR
file.

--output-prefix <prefix> The path prefix for all output reports. This prefix can be
used in two ways:
 If a path is specified (for example “/home/myFiles”),

report files are saved to that location.
 If a string is specified (for example “Run20111011”) it

is appended to the start of the filename, and the file will
be saved in the active directory.

--junctions <junctions_file> Full or relative path to the primary input junction file.
--all-junctions <alljunctions_file> Superset of the input junction file to use when searching for

the related junctions. If this option is omitted, only the
junctions in the primary junction file are used.

--repmask-data <repeat_file> Full or relative path to the file that contains repeat masker
data.

--gene-data <gene_file> Full or relative path to the file that contains gene location
data. Note that this is not the gene file delivered with the
sample genome, but rather a reference assembly-specific
gene annotation file that can be downloaded from the
Complete Genomics website. See “Obtaining Ancillary Files
for Use with CGA Tools”.

--regulatory-region-length <arg>

Length of the region upstream of the gene that may contain
regulatory sequence for the gene. Junctions that connect
this region to another gene will be annotated as a special
kind of gene fusion. If this option is omitted, the length used
is 7500.

--contained-genes-max-range <arg>

Maximum length of a copy or deletion event to annotate
with all genes that overlap the copied or deleted segment.
Negative value causes all events to be annotated regardless
of the length. If this option is omitted, the maximum length
is set to -1.

--max-related-junction-distance <arg> Junctions occurring within this distance are presumed to be
related. If this option is omitted, the distance defaults to
700.

--max-pairing-distance <arg> Maximum allowed distance between junction sides when
searching for paired junctions caused by the same event. If
this option is omitted, the distance defaults to 10000000.

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 78

Option Description
--max-copy-target-length <arg> Pairs of junctions will be classified as a copy event only if

the length of the implied copy target region is below this
threshold. If this option is omitted, the threshold is set to
1000.

--max-simple-event-distance <arg> When given a choice of identifying an event as a mobile
element copy or as a simple deletion/duplication, prefer the
latter explanation if the length of the affected sequence if
below this threshold. If this option is omitted, the threshold
is set to 10000000.

--mobile-element-names <arg> Comma-separated list of the names of the mobile elements
that are known to be active and sometimes copy flanking 3'
sequence. Values can be L1HS, AluY, and SVA.

--max-distance-to-m-e <arg> Maximum allowed distance from the junction side to the
element when searching for a mobile element related to a
junction. If this option is omitted, the maximum distance is
set to 2000.

--max-related-junction-output <arg> Maximum number of related junctions included in the
RelatedJunctionIds field. If this option is omitted, the default
is set to 100.

Input Files
junctions2events takes as input a reference CRR file of the appropriate build, a primary input junctions
file that corresponds to either the allJunctionsBeta-[ASM-ID].tsv or
highConfidenceJunctionsBeta-[ASM-ID].tsv, and, optionally, the all junctions files for more sensitive
event detection.

Output Files
junction2events produces two files:

 Annotated Junctions (<prefix>AnnotatedJunctions.tsv): a file containing the junctions
from the primary input file, with added event annotations for each junction.

 Events (<prefix>Events.tsv): a file containing the events composed from junctions in the input
file.

Annotated Junctions

When generating an annotated junction output, junction2events adds the columns listed in Table 17 for
input files from data generated before Analysis Pipeline version 2.0.

Table 17: Additional Columns Included in Annotated Junctions Output

 Column Name Description
1 EventId Integer ID that links the junction file to the event file.
2 Type Type of the event that caused the junction.
3 RelatedJunctions Semicolon-separated list of other junctions that were grouped with this junction

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 79

Figure 26: Example AnnotatedJunctions.tsv Output

Figure 26: Example AnnotatedJunctions.tsv Output (continued)

L
e
f
t
P
o
s
i
t
i
o
n

L
e
f
t
S
t
r
a
n
d

L
e
f
t
L
e
n
g
t
h

R
i
g
h
t
C
h
r

R
i
g
h
t
P
o
s
i
t
i
o
n

R
i
g
h
t
S
t
r
a
n
d

R
i
g
h
t
L
e
n
g
t
h

S
t
r
a
n
d
C
o
n
s
i
s
t
e
n
t

I
n
t
e
r
c
h
r
o
m
o
s
o
m
a
l

D
i
s
t
a
n
c
e

D
i
s
c
o
r
d
a
n
t
M
a
t
e
P
a
i
r
A
l
i
g
n
m
e
n
t
s

J
u
n
c
t
i
o
n
S
e
q
u
e
n
c
e
R
e
s
o
l
v
e
d

T
r
a
n
s
i
t
i
o
n
S
e
q
u
e
n
c
e

T
r
a
n
s
i
t
i
o
n
L
e
n
g
t
h

L
e
f
t
R
e
p
e
a
t
C
l
a
s
s
i
f
i
c
a
t
i
o
n

964098 + 594 chr1 964525 + 278 Y N 427 19 Y 0 Self chain;Tandem period 61
1070130 - 88 chr1 1070188 - 58 Y N 58 7 Y 0 Self chain;Tandem period 58
1232599 + 449 chr1 1233185 + 401 Y N 586 11 Y 0 Self chain;Tandem period

226;Tandem period 46

2024555 + 617 chr1 2027385 + 561 Y N 2830 84 Y 0 Self chain
2052874 - 162 chr1 2053146 - 204 Y N 272 3 Y AG 2 MLT1A:LTR:ERVL-MaLR;Self

chain;Tandem period 22

>
I
d

R
i
g
h
t
R
e
p
e
a
t
C
l
a
s
s
i
f
i
c
a
t
i
o
n

L
e
f
t
G
e
n
e
s

R
i
g
h
t
G
e
n
e
s

X
R
e
f

D
e
l
e
t
e
d
T
r
a
n
s
p
o
s
a
b
l
e
E
l
e
m
e
n
t

K
n
o
w
n
U
n
d
e
r
r
e
p
r
e
s
e
n
t
e
d
R
e
p
e
a
t

F
r
e
q
u
e
n
c
y
I
n
B
a
s
e
l
i
n
e
G
e
n
o
m
e
S
e
t

3863 Self chain NM_198576 NM_198576 0.7

1187 Self chain;Tandem period 58 0

3862 Self chain;Tandem period 226 NM_030649 NM_030649 0.25

3861 C-rich:Low_complexity:Low_complexity;
Self chain;Tandem period 10;Tandem
period 15;Tandem period 25;Tandem
period 35

NM_001033581;
NM_002744

NM_001033581
;NM_002744

0

1186 (ATGGTG)n:Simple_repeat:Simple_repeat
;Self chain;Tandem period 18;Tandem
period 36;Tandem period 54

NM_001033581;
NM_001033582;
NM_002744

NM_001033581
;NM_00103358
2;NM_002744

0

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 80

Figure 26: Example AnnotatedJunctions.tsv Output (continued)

Events

Table 18: Column Descriptions for junctions2events Output

 Column Name Description

1 EventId Identifier for the event. This consists of positive integers. Event Ids are
consistent across all junction files for a given assembly.

2 Type Structural rearrangement composed of one or more junctions. Possible
values include: artifact, complex, deletion, tandem-
duplication, probable-inversion, inversion, distal-
duplication, distal-duplication-by-mobile-element, and
interchromosomal. See Table 19 for description of each event type.

3 RelatedJunctionIds Junction identifier(s) of junctions that the event is composed of.
Identifiers are semi-colon separated in cases where an event is
represented by multiple junctions.

4 MatePairCounts A number expressing the amount of DNB support available for each
junction that the event is composed of. Numbers are semi-colon
separated in cases where an event is represented by multiple junctions.
They are in the order in which junction identifiers are listed in the
RelatedJunctionIds field.

5 FrequenciesInBaselineGenomeSet Frequency that the junction(s) is detected in set of baseline genomes.
Numbers are semi-colon separated in cases where an event is
represented by multiple junctions. They are in the order in which junction
identifiers are listed in the RelatedJunctionIds field.

6 OriginRegionChr Chromosome name in text: chr1, chr2,…, chr22, chrX, chrY. The
mitochondrion is represented as chrM. The pseudoautosomal regions
within the sex chromosomes X and Y are reported at their coordinates on
chromosome X.

>
I
d

A
s
s
e
m
b
l
e
d
S
e
q
u
e
n
c
e

E
v
e
n
t
I
d

T
y
p
e

R
e
l
a
t
e
d
J
u
n
c
t
i
o
n
s

3863 cctcatgggccaagggcacccacagccacgCCACCCTCTCCGAAGGAACC
GAGCCCCAGCCCCTCGTGGGCCAAGGGCGCCCACAGCCACGCCACCCTCT
CCCAAGGAACCGAGCCCCAGCCCCTCGTGGGCCAAGGGCGCCCACAGCCA
CGCCACCCTTTCCGAAGGAACCGAGCCCCAGCCCCTCTGGGGCCTGCCAA
TTGCCAGAGAGCCCCAGtgctccacccactccaggccccaaccccca

3284 deletion

1187 gagaggggctgcagcctcagatggcgaggaAGCCACACCCCTCACGGTGC
CCCCTCCTGAGAGGGGCTGCagcctcagatggcgaggaagccacacccct

983 tandem-duplication

3862 cacacacaggcgtgtgcacgtgtgtggggcAGGGGCCATCCCCAGTGGCA
CGTGTGTGTGTGCACAGGCGCGGGGCAGGGGCCATCCCCGGTGGCACATG
TGTGCACGGGCTTGGGGCAGGGGCCATCCCCGGTGGCACGTGTGTGTGTG
CACGGGCTTGGGGCAGGGgcaccaagggccacacctcgctatagcaac

3283 deletion

3861 tttcaacaggaactcaagagaaaagttcatGCTTGTCCCCTCACCTGTTT
gactctgctgtgccaggggccagggcaggg

3282 deletion

1186 caccgtgaccctaactaactaccgccatgaCCCTAACTACCACCATGACC
CTAACTACAGCCGTGACCCTAACTACCACCATGACCCTAACTACCACCAT
GACCCTAACTACCACCGTGACCCTAACTACCACCATGACCCTAACTACCA
CCGTGACCCTAACCACCACCGTGACCTTAACTACCACCGTCACCCTAACT
ACAGCCATAGCcctaactactgatataaccctaactactgc

982 complex 1185

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 81

 Column Name Description

7 OriginRegionBegin Reference coordinate specifying the start of the region where the
indicated event is likely to have originated. The coordinate uses the half-
open, zero-based coordinate system. See “Sequence Coordinate System”
for more information.

8 OriginRegionEnd Reference coordinate specifying the end of the region where the indicated
event is likely to have originated. The coordinate uses the half-open, zero-
based coordinate system. See “Sequence Coordinate System” for more
information.

9 OriginRegionLength The distance between the left-most mate read and the right-most mate
read in the junction cluster(s) representing the event at the origin site.

10 OriginRegionStrand Strand (“+” or “-”) of the indicated event at the origin site.
11 DestinationRegionChr Chromosome name in text: chr1, chr2,…, chr22, chrX, chrY. The

mitochondrion is represented as chrM. The pseudoautosomal regions
within the sex chromosomes X and Y are reported at their coordinates on
chromosome X. Values are only present for the following events:
inversion, distal-duplication, distal-duplication-by-mobile-element, and
interchromosomal.

12 DestinationRegionBegin Reference coordinate specifying the start of the region where the
indicated event is likely to have been inserted. The coordinate uses the
half-open, zero-based coordinate system. See “Sequence Coordinate
System” for more information. Values are only present for the following
event types: inversion, distal-duplication, distal-
duplication-by-mobile-element, and interchromosomal.

13 DestinationRegionEnd Reference coordinate specifying the start of the region where the indicated
event is likely to have been inserted. The coordinate uses the half-open,
zero-based coordinate system. See “Sequence Coordinate System” for more
information. Values are only present for the following event types:
inversion, distal-duplication, distal-duplication-by-
mobile-element, and interchromosomal.

14 DestinationRegionLength The distance between the left-most mate read and the right-most mate read
in the junction cluster(s) representing the event at the destination site.

15 DestinationRegionStrand Strand (“+” or “-”) of the indicated event at the destination site.
16 DisruptedGenes Gene(s) overlapping at least one of the junction section positions of the

event.
17 ContainedGenes Gene(s) that are completely contained in event.
18 GeneFusions Junction that appears to either

1) connect two different genes (for example, A and B) in a strand-consistent
manner or
2) connect upstream region of gene A to an intact gene B. In the former
case, fusion event is described as A/B, where A and B are gene symbols.
In the latter case, fusion event is described as TSS-UPSTREAM[A]/B,
where A and B are gene symbols.

19 RelatedMobileElement For duplication events caused by a mobile element, this column contains
the description of the element in the format:

Family:Name:DivergencePercent

For example: L1:L1HS:0.5.

Information for transposed locations in the reference genome is taken from
the RepeatMasker track from UCSC Genome Browser track.

20 MobileElementChr Chromosome name in text: chr1, chr2,…, chr22, chrX, chrY. The
mitochondrion is represented as chrM. The pseudoautosomal regions
within the sex chromosomes X and Y are reported at their coordinates on
chromosome X.

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 82

 Column Name Description

21 MobileElementBegin Coordinate specifying the start of the consensus sequence of the specified
mobile element. Uses half-open, zero-based coordinate system.

22 MobileElementEnd Coordinate specifying the end of the consensus sequence of the specified
mobile element. Uses half-open, zero-based coordinate system. See
“Sequence Coordinate System” for more information.

23 MobileElementStrand Strand (“+” or “-”) of the indicated mobile element.

Table 19: Event Types

Type Description
artifact Event is caused by a flaw in the reference.
complex Event involves multiple junctions and does not fit the pattern of any simple event type.
deletion Deletion of the sequence described by the Origin columns.
tandem-duplication Tandem duplication of the origin sequence.
probable-inversion Inversion of the origin sequence that is confirmed from one side of the inversion only.
inversion Inversion of the origin sequence replacing the sequence described by the Destination

columns, confirmed from both sides.
distal-duplication Copy of the origin sequence into the area described by the Destination columns.
distal-duplication-by-
mobile-element

Copy of the origin sequence caused by a known active mobile element.

interchromosomal Isolated junction between different chromosomes.

Figure 27: Example Events.tsv Output

>
E
v
e
n
t
I
d

T
y
p
e

R
e
l
a
t
e
d
J
u
n
c
t
i
o
n
I
d
s

M
a
t
e
P
a
i
r
C
o
u
n
t
s

F
r
e
q
u
e
n
c
i
e
s
I
n
B
a
s
e
l
i
n
e
G
e
n
o
m
e
S
e
t

3 Inversion 131;4804 136;126 1.00;1.00

4 Complex 137;4805 152;152 0.40;0.40

5 complex 197;2428;4868 53;126;96 0.50;0.50;0.50

6 probable-inversion 203 50 1

7 complex 204;1242 13;26 0.90;0.00

Filtering and Annotation Tools junctions2events (beta)

© Complete Genomics, Inc. CGA Tools User Guide — 83

Figure 27: Example Events.tsv Output (continued)

Example
To identify somatic structural variants, first run junctiondiff to identify junctions present only in the
tumor (generating a file called somaticJunctionsTumor.tsv). Then use junctions2events to
interpret the somatic junctions, identifying putative somatic structural events. The file
allJunctionsBeta-GS00001-DNA_A01_1120_37-ASM.tsv (abbreviated to
allJunctions...0_37-ASM.tsv in the example) is the list of all junctions predicted in a given
sample.

cgatools junctions2events \
--beta \
--reference build37.crr
--output-prefix eventOutput_ \
–-junctions somaticJunctionsTumor.tsv \
--all-junctions /GS00302-DNA_A01_1120_37-ASM/GS00302-DNA_A01/ASM/SV/allJunctions...0_37-ASM.tsv \
--gene-data gene37.tsv.gz \
--repmask-data rmsk37.tsv.gz \

Note that with the release of Analysis Pipeline version 2.0, genomes sequenced as part of the Cancer
Sequencing Service have somatic junctions reported as part of the genome package. These files can be
found within the SV subfolder within the ASM directory for the tumor genomes.

>
E
v
e
n
t
I
d

O
r
i
g
i
n
R
e
g
i
o
n
C
h
r

O
r
i
g
i
n
R
e
g
i
o
n
B
e
g
i
n

O
r
i
g
i
n
R
e
g
i
o
n
E
n
d

O
r
i
g
i
n
R
e
g
i
o
n
L
e
n
g
t
h

O
r
i
g
i
n
R
e
g
i
o
n
S
t
r
a
n
d

D
e
s
t
i
n
a
t
i
o
n
R
e
g
i
o
n
C
h
r

D
e
s
t
i
n
a
t
i
o
n
R
e
g
i
o
n
B
e
g
i
n

D
e
s
t
i
n
a
t
i
o
n
R
e
g
i
o
n
L
e
n
g
t
h

D
e
s
t
i
n
a
t
i
o
n
R
e
g
i
o
n
E
n
d

D
e
s
t
i
n
a
t
i
o
n
R
e
g
i
o
n
S
t
r
a
n
d

D
i
s
r
u
p
t
e
d
G
e
n
e
s

C
o
n
t
a
i
n
e
d
G
e
n
e
s

G
e
n
e
F
u
s
i
o
n
s

3 chr21 27374153 27374699 546 - chr21 27374158 27374705 547 + APP

4

5

6 chr17 41381589 41463570 81981 - LOC100130581

7 PUS1

Reference Tools

© Complete Genomics, Inc. CGA Tools User Guide — 84

Reference Tools

At times, CGA Tools uses the reference sequence in a random-access manner. The most common
reference sequence format, FASTA, is not ideal for processing tasks that require random access because
the entire sequence must be read into memory at the start of the program, and this memory cannot be
shared among processes.

CRR File Format
CGA Tools uses its own file format, Compact Randomly Accessible Reference (CRR), to represent a
reference sequence. The CRR file format stores two bits per base of reference, plus lookup tables to
resolve regions of the reference that are represented by ambiguous IUPAC codes. CRR files are memory
mapped, so that processes can share a reference, and the overall memory requirement due to the
reference for all processes is less than 1 GB. The CRR file format does not preserve character case—
FASTA reference files often use case to denote the region’s repeat status—and considers all the bases
described in the reference FASTA sequence as upper case.

See “Obtaining Ancillary Files for Use with CGA Tools” for downloading instructions.

FASTA Reference Sequences
Complete Genomics supports two references. The first, which we refer to as “build 36,” consists of the
assembled nuclear chromosomes from NCBI build 36 (without unplaced or alternate loci) plus Yoruban
mitochondrion NC_001807.4. This assembly is also known as UCSC hg18. The second reference, which we
refer to as “build 37,” consists of the assembled nuclear chromosomes from GRCh37 (without unplaced or
alternate loci), plus the Cambridge Reference Sequence for the mitochondrion (NC_012920.1). An
alternative assembly using GRCh37 and another mitochondrial sequence, known as UCSC hg19, is not
compatible with CGA Tools and should not be used.

See “Obtaining Ancillary Files for Use with CGA Tools” for downloading instructions.

Reference Tools fasta2ccr

© Complete Genomics, Inc. CGA Tools User Guide — 85

fasta2ccr
Converts input FASTA sequences into a single reference CRR file. The following sections describe its
behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools fasta2crr –-help
 --input <fasta_file_list>
 --output <crr_file>
 --circular <chromosome_list>

Description
This tool converts input FASTA sequences into a single reference CRR file.

We recommend that you download pre-made reference CRR files for human genome reference
builds 36 and 37. See “Obtaining Ancillary Files for Use with CGA Tools” for download instructions.

You can also download FASTA files containing the entire genome sequence for both builds if you would
like to generate the reference CRR file yourself. Separate files for each chromosome are also accepted as
input.

Important: Complete Genomics “build37” consists of the assembled nuclear chromosomes from GRCh37
(not unplaced or alternate loci), plus the Cambridge Reference Sequence for the mitochondrion
(NC_012920.1). This assembly (though with an alternate mitochondrial sequence) is also known as UCSC
hg19.

Customers who build CRR files using fasta2crr must use the correct mitochondrial sequence. CRR files
generated using the UCSC hg19 FASTA files are incompatible with CGA Tools because they contain a
different mitochondrial sequence.

Command Line Options
Option Description
-h or --help Print command-line help.
--input <fasta_file_list> The input FASTA files. You can use a positional argument to specify the files

or you can omit this option if using STDIN). Order is important: take care to
specify the FASTA files in chromosome order.

To work with human Complete Genomics data, the chromosome files should
be in the following order, where spaces are used to separate the files:

chr1...chr22 chrX chrY chrM

The entire reference human genome in one FASTA file is available on the
Complete Genomics FTP site. See “Obtaining Ancillary Files for Use with CGA
Tools” for download information.

Note that compressed (.bz2) files are accepted as input.
--output <crr_file> The output CRR file. If omitted, the output is sent to STDOUT.
--circular
<chromosome_list>

A comma-separated list of circular chromosome names. If this option is
omitted, chrM is used as default.

Reference Tools fasta2ccr

© Complete Genomics, Inc. CGA Tools User Guide — 86

Input Files
The input file(s) should be in the FASTA file format. You may have separate FASTA files for each
chromosome or one large file that contains all of the FASTA sequences for each chromosome. Note that
fasta2crr will accept compressed files (.bz2) as input. Figure 28 shows an example input file.

Figure 28: fasta2crr Input File Example

>chr1
NNN
…
TTTGCTGTTCCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACT
TGCCGTCAGCCTTTTCTTTGACCTCTTCTTTCTGTTCATGTGTATTTGCTGTCTCTTAGCCCAGACTTCCCGTGT
CCTTTCCACCGGGCCTTTGAGAGGTCACAGGGTCTTGATGCTGTGGTCTTCATCTGCAGGTGTCTGACTTCCAGC
AACTGCTGGCCTGTGCCAGGGTGCAAGCTGAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAG
TGGGATGGGCCATTGTTCATCTTCTGGCCCCTGTTGTCTGCATGTAACTTAATACCACAACCAGGCATAGGGGAA
AGATTGGAGGAAAGATGAGTGAGAGCATCAACTTCTCTCACAACCTAGGCCAGTAAGTAGTGCTTGTGCTCATCT
…
>chrY
NNN
NNN
…
>chrM
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGGGTGTG
CACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
…

Output Files
A CRR reference file, which is a custom format that is compact and enables random access of the
reference.

Example
Suppose that you would like to create a CRR file for build 37 of the human genome. You can download the
genome in FASTA format from the Complete Genomics FTP site. (See “Obtaining Ancillary Files for Use
with CGA Tools”.) The following command will generate a reference CRR file called build37.crr.

cgatools fasta2crr \
--input build37.fa.bz2 \
--output build37.crr

Reference Tools crr2fasta

© Complete Genomics, Inc. CGA Tools User Guide — 87

crr2fasta
Generates a FASTA file with the complete sequence of the input reference CRR file. The following sections
describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools crr2fasta --help
 --input <crr_file>
 --output <fasta_file>
 --line-width <width>

Description
This tool converts reference CRR files into the FASTA file format.

Command Line Options
Option Description
-h or --help Print command-line help.
--input <crr_file> The full or relative path to the reference CRR file. You can use a positional

argument to specify the CRR file.
--output <fasta_file> The full or relative path to the output FASTA file. If omitted, the output is sent to

STDOUT.
--line-width <width> The maximum width of a line of sequence. Defaults to 50 characters.

Input Files
A CRR reference file.

Output Files
crr2fasta generates a FASTA file with the complete sequence of the reference CRR that you provide as
input. Figure 29 shows an example of the output.

Figure 29: crr2fasta Output

>chr1
NNN
…
>chrM
…
TTTGCTGTTCCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCACACCATCCTCCGTGAAATCAATATCCCGCACAA
GAGTGCTACTCTCCTCGCTCCGGGCCCATAACACTTGGGGGTAGCTAAAGTGAACTGTATCCGACATCTGGTTCCTACTTCAG
GGTCATAAAGCCTAAATAGCCCACACGTTCCCCTTAAATAAGACATCACGATG

Example
To output the entire sequence of the reference genome to a FASTA file named build37.fa, you can run
the following command:

cgatools crr2fasta \
--input /ReferenceFiles/build37.crr \
-–output build37.fa

Reference Tools decodecrr

© Complete Genomics, Inc. CGA Tools User Guide — 88

decodecrr
Retrieves the sequence for a given range of a chromosome. The following sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools decodecrr --help
 --reference <crr_file>
 --output <output_file>
 --range <range_specification>

Description
This command retrieves the sequence for a given range of a chromosome.

Command Line Options
Option Description
-h or --help Print command-line help.
--reference <crr_file> The full or relative path to the reference CRR file. You can use a

positional argument to specify the CRR file.
--output <output_file> The output FASTA file. If omitted, output is sent to STDOUT.
--range <range_specification> The range of bases to print, formatted as chr,begin,end or

chr:begin-end.

Input Files
A CRR reference file, which is a custom format that is compact and enables random access of the
reference.

Output Files
The command decodecrr extracts only the sequence from the range specified and send the information to
standard out. Figure 30 shows the output format.

Figure 30: decodecrr Output Example

ACCCCGTCTCTACAATAAATTAAAATATTAGCTGGGCATGGTGGTGTGTGCTTGTAGTCCCAGCTACTTGGCGGGCTGAGGT
GGGAGAATCATCCAAGCCTTGGAGGCAGAGGTTGCAGTGAGCTGAGATTGTGACACTGCACTCCAGCCTGGGAGACAGAGTG
AGACTCCTACTCAAAAAAAAACAAAAAACAAAAAACAAACCACAAAACTTTCCAGGTAACTTATTAAAACATGTTTTTTGTT
TGTTTTGAGACAGAGTCTTGCTCTGTCGCCCAGGCTGGAGTGCAGTGGAGCAATCTCAGCTCACTGCAAGCTCCGCCTCCCG
GGTTCACACCATTCTCCTGCCTCAGCCTCCCGAGTAGCTAGGACTATAGGCACCCGCCACCACGCCCAGCTTATTTTTTTTG
TATTTTTTAGTAGAGACGGGGTTTCATCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCACCTCAGCC
TCCCAAAG

Example
To extract the sequence for the PCDH7 gene on chromosome four, at coordinates 30722030 to 30726957,
you would use the following command:

cgatools decodecrr --reference /home/complete/ref37/build37.crr \
–range chr4:30722030-30726957

decodecrr extracts only the sequence from the range specified. Figure 30 shows the output.

Reference Tools listcrr

© Complete Genomics, Inc. CGA Tools User Guide — 89

listcrr
Lists the chromosomes, contigs, or regions of ambiguous sequence within the reference. The following
sections describe its behavior:

 Synopsis
 Description
 Command Line Options
 Input Files
 Output Files
 Example

Synopsis
cgatools listcrr –-help
 --reference <crr_file>
 --output <output_file>
 --circular <chromosome_list>
 --mode <output_type>
 --min-contig-gap-length <length>

Description
This command lists the chromosomes, contigs, or regions of ambiguous sequence within the reference,
depending on the parameters.

The contigs described by listcrr are defined to be the contiguous sequence bases separated by at least
min-contig-gap-length no-call bases, where min-contig-gap-length defaults to 50. The
default contigs correspond to the notion of contig employed in the Complete Genomics data, such as
reference scores. The default mode is chromosome.

Command Line Options
Option Description
-h or --help Print command-line help.
--reference <crr_file> The full or relative path to the reference CRR file. You can use a

positional argument to specify the CRR file.
--output <output_file> The full or relative path to the output file. If omitted, the output is

sent to STDOUT.
--circular <chromosome_list> A comma-separated list of circular chromosome names. If this

option is omitted, chrM is used as default.
--mode <output_type> The output type. Specify arg as one of:

 chromosome: (Default) Lists each chromosome, its length,
whether or not it is circular, and the Md5 checksum value.

 contig: List the contigs and gaps in the reference sequence
and their locations.

 ambiguity: Lists the regions of the reference that are
ambiguous (N).

--min-contig-gap-length <length> Minimum length of the gap between reference contigs, for
mode=contig. If this option is omitted, the gap defaults to 50.

Input Files
A CRR reference file, which is a custom format that is compact and enables random access of the
reference.

Reference Tools listcrr

© Complete Genomics, Inc. CGA Tools User Guide — 90

Output Files
After you have successfully downloaded a build 37 CRR file (or converted the downloaded reference into
CRR using fasta2crr) for use with Complete Genomics data, the listcrr command in mode=chromosome
returns the output shown in Figure 31.

Figure 31: listcrr Output for Build 37 with mode=chromosome

ChromosomeId Chromosome Length Circular Md5
 0 chr1 249250621 false 1b22b98cdeb4a9304cb5d48026a85128
 1 chr2 243199373 false a0d9851da00400dec1098a9255ac712e
 2 chr3 198022430 false 641e4338fa8d52a5b781bd2a2c08d3c3
 3 chr4 191154276 false 23dccd106897542ad87d2765d28a19a1
 4 chr5 180915260 false 0740173db9ffd264d728f32784845cd7
 5 chr6 171115067 false 1d3a93a248d92a729ee764823acbbc6b
 6 chr7 159138663 false 618366e953d6aaad97dbe4777c29375e
 7 chr8 146364022 false 96f514a9929e410c6651697bded59aec
 8 chr9 141213431 false 3e273117f15e0a400f01055d9f393768
 9 chr10 135534747 false 988c28e000e84c26d552359af1ea2e1d
 10 chr11 135006516 false 98c59049a2df285c76ffb1c6db8f8b96
 11 chr12 133851895 false 51851ac0e1a115847ad36449b0015864
 12 chr13 115169878 false 283f8d7892baa81b510a015719ca7b0b
 13 chr14 107349540 false 98f3cae32b2a2e9524bc19813927542e
 14 chr15 102531392 false e5645a794a8238215b2cd77acb95a078
 15 chr16 90354753 false fc9b1a7b42b97a864f56b348b06095e6
 16 chr17 81195210 false 351f64d4f4f9ddd45b35336ad97aa6de
 17 chr18 78077248 false b15d4b2d29dde9d3e4f93d1d0f2cbc9c
 18 chr19 59128983 false 1aacd71f30db8e561810913e0b72636d
 19 chr20 63025520 false 0dec9660ec1efaaf33281c0d5ea2560f
 20 chr21 48129895 false 2979a6085bfe28e3ad6f552f361ed74d
 21 chr22 51304566 false a718acaa6135fdca8357d5bfe94211dd
 22 chrX 155270560 false 7e0e2e580297b7764e31dbc80c2540dd
 23 chrY 59373566 false 1e86411d73e6f00a10590f976be01623
 24 chrM 16569 true c68f52674c9fb33aef52dcf399755519

When mode=contig is specified, listcrr displays the contigs and gaps in the reference sequence. An
excerpt of the output is shown in Figure 32:

Figure 32: listcrr Output with mode=contig

ChromosomeId Chromosome Type Offset Length
 0 chr1 GAP 0 10000
 0 chr1 CONTIG 10000 167417
 0 chr1 GAP 177417 50000
 0 chr1 CONTIG 227417 40302
 0 chr1 GAP 267719 50000
 0 chr1 CONTIG 317719 153649
 0 chr1 GAP 471368 50000
 0 chr1 CONTIG 521368 2112852
 0 chr1 GAP 2634220 50000
 0 chr1 CONTIG 2684220 1161048
 0 chr1 GAP 3845268 150000
 0 chr1 CONTIG 3995268 9057730

Reference Tools listcrr

© Complete Genomics, Inc. CGA Tools User Guide — 91

When mode=ambiguity is specified, listcrr displays the regions of the reference where there is
ambiguity. An excerpt of the output is shown in Figure 33:

Figure 33: listcrr Output with mode=ambiguity

ChromosomeId Chromosome Code Offset Length
 0 chr1 N 0 10000
 0 chr1 N 177417 50000
 0 chr1 N 267719 50000
 0 chr1 N 471368 50000
 0 chr1 N 2634220 50000
 0 chr1 N 3845268 150000
 0 chr1 N 13052998 50000
 0 chr1 N 13219912 100000
 0 chr1 N 13557162 50000
 0 chr1 N 17125658 50000
 0 chr1 N 29878082 150000
 0 chr1 N 103863906 50000
 0 chr1 N 120697156 50000
 0 chr1 N 120936695 150000

Example
Suppose you would like to display the regions of the reference sequence where there is ambiguity (called
‘N’). You would enter:

cgatools listcrr --reference /home/complete/build37.crr --mode ambiguity

Appendix snpdiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 92

Appendix

snpdiff Algorithm
The algorithm employed by snpdiff is as follows, for each allele:

 Find the call in the variant file that overlaps the position in question. Use this call alone to determine
the base call for the position in question.

 Walk the alleleSeq column of the call from the right and left until reaching the position in question.
For each direction, any of the following outcomes may be reached:

 WALK_OK – The position in question was reached.
 WALK_EOS – The end of alleleSeq was reached before getting to the position in question.
 WALK_INCOMPATIBLE – A base call incompatible with the reference base was found at

some position before reaching the position in question.
 WALK_LENGTH_NOCALL – A length no-call (represented by “?”) is discovered before

reaching the position in question.
 Combine the results of the walk from the right and left to determine the result. The results are

combined by the following rules:
 If the walk from the left and right both end up at the position of interest (WALK_OK):

− If the base calls discovered by the two walks are in conflict, declare a larger variation (“.”).
− If the base calls discovered by the two walks are consistent and at least one is called, use the

base call.
− If both walks end up with a no-call (“N”), the result is no-call.
 If only one walk ends up at the position of interest (WALK_OK), use the base discovered by

that walk.
 If neither walk ends up at the position of interest, then:

− If either walk ends up as WALK_LENGTH_NOCALL, mark the position as no-call (“N”).
− If either walk ends up as WALK_EOS, mark the position as deleted (“-”).
− Otherwise, mark the position as a larger variant (“.”).

Figure 34: Algorithm Logic from snpdiff

reference alleleSeq Walk L->R Walk R->L Outcome
A C WALK_OK: C WALK_OK: C C
ACGTACGT ACGTACGT WALK_OK: T WALK_OK: T T
G CC WALK_OK: C WALK_OK: C C
G CG WALK_OK: C WALK_OK: G .
ACGT AGGN WALK_OK: G WALK_OK: G G
ACGT AGG? WALK_OK: G WALK_LENGTH_NOCALL G
ACGT ?GG? WALK_LENGTH_NOCALL WALK_LENGTH_NOCALL N
ACGT CGGT WALK_INCOMPATIBLE WALK_OK: G G
ACGT CGGG WALK_INCOMPATIBLE WALK_INCOMPATIBLE .
CACACAC CAC WALK_EOS WALK_EOS -

calldiff Algorithm
The calldiff tool compares two variant files to determine where and how the two genomes differ. To
achieve this, it first gathers variants into superloci, which may account for several nearby variants. It
compares the genomes for each superlocus then refines the comparison result to get call-level and locus-
level detail.

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 93

If the superloci are too small, superlocus comparison tends to be overly sensitive to canonical alignment.
However, if superloci are too large, superlocus comparison tends to allow any sequence from one genome
to match in a gap of unknown sequence in the other genome. As an example of a superlocus that is too
large, suppose we had the sequence from a haploid chromosome of two genomes shown in Figure 35:

Figure 35: Example of a Superlocus that is too Large

When considering the red superlocus in Figure 35, and when interpreting the meaning of the calls
literally, we can see that all the called bases between the “?” characters in Genome A may be aligned to
the “?” character of Genome B, and the genomes are consistent. But when considering the blue box to be
the superlocus, we see that the genomes are inconsistent. In different contexts, one superlocus or the
other may be preferable, but generally for most comparisons, we would want a comparison algorithm
in this case to state the inconsistency between the genomes. To achieve this, a comparison algorithm
must either be very precise about how to compare superloci or very precise about how to define a
superlocus:

 Precise about how to compare superloci: such as when using the red superlocus, determine that there
is enough high complexity and uncommon sequence between the “?” characters in Genome A that the
SNP in the middle must be aligned as called.

 Precise about how to define a superlocus: such as always use the blue superlocus in this situation.
calldiff achieves its specificity by being precise about its superlocus definition.

To determine the superloci, calldiff begins by labeling each reference region containing a variant in either
variant file as a superlocus. The superloci are then extended according to the following criteria:

1. Circular prefix/suffix matching. For every call whose alleleSeq does not contain “N” or “?”, do prefix
matching to the right along the reference and suffix matching to the left along the reference of both
the alleleSeq and the reference sequence, such that the superlocus extension does not exceed P bases
(the P limit is necessary to limit the superlocus size for pathological situations). For example, if the
call is for an insertion of “ACGT” and the reference sequence directly to the right is “ACGA”, three
prefix bases of the alleleSeq can be matched to the reference sequence directly to the right, indicating
that an equivalent insertion exists at each position in that range. So the superlocus must be extended
to account for any variants within three bases to the right of the variant. Additionally, in the example
above, if the sequence directly to the right of the call was “ACGTACGA”, then the entire insertion of
four bases can be prefix matched, and continuing along the reference, the next three bases also match
the prefix of the insertion. (This is circular prefix matching.) So the superlocus must be extended to
the right by seven bases.

2. Fixed base count. Always extend superloci to the right and left by N bases, where N is a command-
line configurable parameter. Currently, this parameter defaults to 0.

3. Fixed count of distinct 3-mers. Always extend by M distinct reference 3-mers to the right and left,
where M is a command-line configurable parameter. In regions of low reference sequence

Reference: GGCATGTGCCTGTGGTTCCAGCAACTAGAGAAGCTGAGGTGGGAGGATCGCTT

Genome A: GG?ATGTGCCTGTGGTTCCAGCAACTAGAGAAGCTGAGGTGGGAGGATC?CTT

Genome B: GGCATGTGCCTGTGGTTCCAGCAACCAGAGAAGCTGAGGTGGGAGGATC?CTT

The superlocus is circled in red. Genomes A and B are consistent when considering the red
superlocus as a whole because the called sequence between the “?” characters in Genome A may
be aligned to the “?” character of Genome B.

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 94

complexity, this results in longer superloci. In regions of high reference sequence complexity, this
results in shorter superloci. Currently, this parameter defaults to 4.

After the superloci have been fully extended, overlapping and abutting superloci are combined into a
single superlocus.

After superloci have been found, all possible phasings consistent with the hapLink values in the calls are
used to produce hypotheses about what the genome sequence is, for each variant file. Then each
permutation of each hypothesis (one permutation for haploid, two for diploid, and six for triploid) is
compared to each hypothesis of the other variant file according to a literal interpretation of their
sequence. In other words, any number of bases may align against length no-calls (“?”). The best
comparison is produced, such that the number of discordant haplotypes is minimized. The alleles of the
best comparison are then segmented to get call-level comparison results. The call-level comparison
results are defined to be no worse than the result for the allele as a whole; if a segment comparison
results in a worse comparison result than the allele as a whole, the allele’s comparison result is used in its
place. The call-level comparison results are then used to classify the comparison of each locus as a whole.

The results of calldiff are, for each allele, a comparison classification as described in Table 6.

calldiff for Scoring Somatic Variations (beta)
Somatic variation discovery is an important use case for calldiff. calldiff will identify variations that exist
only in the input file A and not in file B and assign a somatic score to each of those variants to help tease
apart the true somatic mutations from false somatic mutations.

calldiff uses the scores provided in Complete Genomics variation file (varScoreVAF, or totalScores for data
prior to Assembly 2.0) and the calibrated scores specified using the --calibration-root option to
determine which somatic mutations are called with higher confidence, and provides this information as a
single somatic score. The somatic score is defined as:

𝑆𝑜𝑚𝑎𝑡𝑖𝑐𝑆𝑐𝑜𝑟𝑒 = −10 log10 𝐿𝑠𝑜𝑚

where 𝐿𝑠𝑜𝑚 is the estimated likelihood ratio

𝑃(𝑠𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑎𝑙𝑙 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒)
𝑃(𝑠𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑎𝑙𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒)

To estimate this likelihood ratio, we use the formula:

𝐿𝑠𝑜𝑚 = 𝐿𝐴
𝑛𝑇𝑃,𝐴

𝑛𝑠𝑜𝑚
+ 𝐿𝐵

𝑛𝑇𝑁,𝐵

𝑛𝑠𝑜𝑚

Here, LA is the likelihood ratio P(variant call in A is false)
P(variant call in A is true)

, LB is the likelihood ratio P(reference call in A is false)
P(reference call in A is true)

, nTP,A
is the number of true positives in the A genome, nTN,B is the number of true negative base calls in the B
genome, and nsom is the number of true somatic mutations. This formula is derived in “Computing the
Somatic Likelihood Ratio”.

Note that the likelihood ratios LA and LB are derived in a straightforward manner from the calibration
data, correcting for the count of variants present in this genome and assuming that the count of false
positives in A scales as the count of bases in the genome but the count of false negatives in B scales as the
count of true variants in the genome. The likelihood ratio LA is also substantially affected by the choice of
variant model, as described in “Calldiff Diploid Option”.

The computation of the SomaticScore makes the following assumptions:

 The rate of somatic snp is 1 per Mb.
 The rate of somatic ins is 1 per 10Mb.
 The rate of somatic del is 1 per 10Mb.
 The rate of somatic sub is 1 per 20Mb.

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 95

Note that the rate of somatic variant is an assumed value (which is different for each somaticCategory),
and we do not attempt to determine it empirically. With additional knowledge of the true rate of somatic
mutation, it should be straightforward to scale the somatic score to better reflect this reality, according to
equation (2) above. For more information on whether to use the --diploid option and what score
cutoff to use, see the section “SomaticScore Characterization”.

Computing the Somatic Likelihood Ratio
Given a locus L where genome A (the “tumor” genome) has a variant call and genome B (the “normal”
genome) has a reference call, we wish to determine the likelihood that the discordance is a true
difference between the genomes. We define 𝒗𝑨 to be the condition that genome A is called variant at L,
with score varScoreA. We define 𝒓𝑩 to be the condition that genome B is called reference at L with score
refScoreB.

The calibrated scores provided by Complete Genomics allow us to determine the likelihood ratios 𝑳𝑨 and
𝑳𝑩, which are a measure of the likelihood the variant call in genome A is false (𝑭𝑷𝑨) or true (𝑻𝑷𝑨) given
the raw score information (𝒗𝑨), and the likelihood the reference call in genome B is false (𝑭𝑵𝑩) or true
(𝑻𝑵𝑩) given the raw score information (𝒓𝑩). The likelihood ratios are defined as follows:

𝐿𝐴 =
𝑃(𝐹𝑃𝐴|𝑣𝐴)
𝑃(𝑇𝑃𝐴|𝑣𝐴)

𝐿𝐵 =
𝑃(𝐹𝑁𝐵|𝑟𝐵)
𝑃(𝑇𝑁𝐵|𝑟𝐵)

Given this, we wish to determine the somatic likelihood ratio given the raw score information for the
calls:

𝐿𝑠𝑜𝑚 =
𝑃(𝑛𝑜𝑡 𝑠𝑜𝑚𝑎𝑡𝑖𝑐|𝑣𝐴, 𝑟𝐵)
𝑃(𝑠𝑜𝑚𝑎𝑡𝑖𝑐|𝑣𝐴, 𝑟𝐵)

=
𝑃(𝐹𝑃𝐴,𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵) + 𝑃(𝑇𝑃𝐴,𝐹𝑁𝐵|𝑣𝐴, 𝑟𝐵)

𝑃(𝑇𝑃𝐴,𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵)

=
𝑃(𝐹𝑃𝐴|𝑇𝑁𝐵 , 𝑣𝐴, 𝑟𝐵)𝑃(𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵)

𝑃(𝑇𝑃𝐴 ,𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵)
+
𝑃(𝐹𝑁𝐵|𝑇𝑃𝐴, 𝑣𝐴 , 𝑟𝐵 ,𝑑)𝑃(𝑇𝑃𝐴|𝑣𝐴, 𝑟𝐵)

𝑃(𝑇𝑃𝐴 ,𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵)

=
𝑃(𝐹𝑃𝐴|𝑇𝑁𝐵 , 𝑣𝐴, 𝑟𝐵)𝑃(𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵)
𝑃(𝑇𝑃𝐴|𝑇𝑁𝐵 , 𝑣𝐴 , 𝑟𝐵)𝑃(𝑇𝑁𝐵|𝑣𝐴, 𝑟𝐵)

+
𝑃(𝐹𝑁𝐵|𝑇𝑃𝐴, 𝑣𝐴 , 𝑟𝐵 ,𝑑)𝑃(𝑇𝑃𝐴|𝑣𝐴, 𝑟𝐵)
𝑃(𝑇𝑁𝐵|𝑇𝑃𝐴 , 𝑣𝐴, 𝑟𝐵 ,𝑑)𝑃(𝑇𝑃𝐴|𝑣𝐴, 𝑟𝐵)

=
𝑃(𝐹𝑃𝐴|𝑇𝑁𝐵 , 𝑣𝐴, 𝑟𝐵)
𝑃(𝑇𝑃𝐴|𝑇𝑁𝐵 , 𝑣𝐴, 𝑟𝐵) +

𝑃(𝐹𝑁𝐵|𝑇𝑃𝐴 , 𝑣𝐴, 𝑟𝐵)
𝑃(𝑇𝑁𝐵|𝑇𝑃𝐴, 𝑣𝐴, 𝑟𝐵)

By Bayes’ theorem we have:

=
𝑃(𝑇𝑁𝐵 , 𝑣𝐴, 𝑟𝐵|𝐹𝑃𝐴)𝑃(𝐹𝑃𝐴)
𝑃(𝑇𝑁𝐵 , 𝑣𝐴, 𝑟𝐵|𝑇𝑃𝐴)𝑃(𝑇𝑃𝐴)

+
𝑃(𝑇𝑃𝐴, 𝑣𝐴, 𝑟𝐵|𝐹𝑁𝐵)𝑃(𝐹𝑁𝐵)
𝑃(𝑇𝑃𝐴 , 𝑣𝐴, 𝑟𝐵|𝑇𝑁𝐵)𝑃(𝑇𝑁𝐵)

By independence assumption we have:

=
𝑃(𝑇𝑁𝐵 , 𝑟𝐵|𝐹𝑃𝐴)𝑃(𝑣𝐴|𝐹𝑃𝐴)𝑃(𝐹𝑃𝐴)
𝑃(𝑇𝑁𝐵 , 𝑟𝐵|𝑇𝑃𝐴)𝑃(𝑣𝐴|𝑇𝑃𝐴)𝑃(𝑇𝑃𝐴)

+
𝑃(𝑇𝑃𝐴 , 𝑣𝐴|𝐹𝑁𝐵)𝑃(𝑟𝐵|𝐹𝑁𝐵)𝑃(𝐹𝑁𝐵)
𝑃(𝑇𝑃𝐴 , 𝑣𝐴|𝑇𝑁𝐵)𝑃(𝑟𝐵|𝑇𝑁𝐵)𝑃(𝑇𝑁𝐵)

=
𝑃(𝑟𝐵|𝑇𝑁𝐵 ,𝐹𝑃𝐴)𝑃(𝑇𝑁𝐵|𝐹𝑃𝐴)𝑃(𝑣𝐴|𝐹𝑃𝐴)𝑃(𝐹𝑃𝐴)
𝑃(𝑟𝐵|𝑇𝑁𝐵 ,𝑇𝑃𝐴)𝑃(𝑇𝑁𝐵|𝑇𝑃𝐴)𝑃(𝑣𝐴|𝑇𝑃𝐴)𝑃(𝑇𝑃𝐴)

+
𝑃(𝑣𝐴|𝑇𝑃𝐴,𝐹𝑁𝐵)𝑃(𝑇𝑃𝐴|𝐹𝑁𝐵)𝑃(𝑟𝐵|𝐹𝑁𝐵)𝑃(𝐹𝑁𝐵)
𝑃(𝑣𝐴|𝑇𝑃𝐴 ,𝑇𝑁𝐵)𝑃(𝑇𝑃𝐴|𝑇𝑁𝐵)𝑃(𝑟𝐵|𝑇𝑁𝐵)𝑃(𝑇𝑁𝐵)

We assume the call and score in B does not depend on the A genome or call in A, and vice versa. So:

 𝑃(𝑟𝐵|𝑇𝑁𝐵 ,𝐹𝑃𝐴) = 𝑃(𝑟𝐵|𝑇𝑁𝐵 ,𝑇𝑃𝐴) and 𝑃(𝑣𝐴|𝑇𝑃𝐴,𝐹𝑁𝐵) = 𝑃(𝑣𝐴|𝑇𝑃𝐴 ,𝑇𝑁𝐵).

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 96

Thus:

𝐿𝑠𝑜𝑚 =
𝑃(𝑇𝑁𝐵|𝐹𝑃𝐴)𝑃(𝑣𝐴|𝐹𝑃𝐴)𝑃(𝐹𝑃𝐴)
𝑃(𝑇𝑁𝐵|𝑇𝑃𝐴)𝑃(𝑣𝐴|𝑇𝑃𝐴)𝑃(𝑇𝑃𝐴)

+
𝑃(𝑇𝑃𝐴|𝐹𝑁𝐵)𝑃(𝑟𝐵|𝐹𝑁𝐵)𝑃(𝐹𝑁𝐵)
𝑃(𝑇𝑃𝐴|𝑇𝑁𝐵)𝑃(𝑟𝐵|𝑇𝑁𝐵)𝑃(𝑇𝑁𝐵)

 (1)

We can also apply Bayes’ theorem to the definition of 𝑳𝑨 and 𝑳𝑩 from above:

𝐿𝐴 =
𝑃(𝐹𝑃𝐴|𝑣𝐴)
𝑃(𝑇𝑃𝐴|𝑣𝐴) =

𝑃(𝑣𝐴|𝐹𝑃𝐴)𝑃(𝐹𝑃𝐴)
𝑃(𝑣𝐴|𝑇𝑃𝐴)𝑃(𝑇𝑃𝐴)

𝐿𝐵 =
𝑃(𝐹𝑁𝐵|𝑟𝐵)
𝑃(𝑇𝑁𝐵|𝑟𝐵)

=
𝑃(𝑟𝐵|𝐹𝑁𝐵)𝑃(𝐹𝑁𝐵)
𝑃(𝑟𝐵|𝑇𝑁𝐵)𝑃(𝑇𝑁𝐵)

Plugging this into (1) above, we have:

𝐿𝑠𝑜𝑚 = 𝐿𝐴
𝑃(𝑇𝑁𝐵|𝐹𝑃𝐴)
𝑃(𝑇𝑁𝐵|𝑇𝑃𝐴) + 𝐿𝐵

𝑃(𝑇𝑃𝐴|𝐹𝑁𝐵)
𝑃(𝑇𝑃𝐴|𝑇𝑁𝐵)

We estimate 𝑃(𝑇𝑁𝐵|𝐹𝑃𝐴) = 1. In other words, most true reference positions in A are true reference
positions in B, and most true reference positions in B are called reference. Similarly, we also estimate
𝑃(𝑇𝑃𝐴|𝐹𝑁𝐵)=1. Additionally, we define 𝑛som to be the count of true somatic loci, 𝑛TP,A to be the count of
true variants in genome A, and 𝑛𝑇𝑁,𝐵 to be the total count of true reference positions in B. We have:

𝑃(𝑇𝑁𝐵|𝑇𝑃𝐴) =
𝑛𝑠𝑜𝑚
𝑛𝑇𝑃,𝐴

𝑃(𝑇𝑃𝐴|𝑇𝑁𝐵) =
𝑛𝑠𝑜𝑚
𝑛𝑇𝑁,𝐵

Thus:

𝐿𝑠𝑜𝑚 = 𝐿𝐴
𝑛𝑇𝑃,𝐴

𝑛𝑠𝑜𝑚
+ 𝐿𝐵

𝑛𝑇𝑁,𝐵

𝑛𝑠𝑜𝑚
 (2)

Calldiff Diploid Option
When using the --diploid option to calldiff, we use the calibration of varScoreEAF, and additionally
assume all germline heterozygous and somatic variants are present at 50% allele fraction.

Without this option, we use the calibration of varScoreVAF and assume a mixture model, where half the
germline heterozygous and somatic variants are present at 50% allele fraction and half are present at
20% allele fraction. This effectively increases our confidence in lower scoring variants, such as would be
the case for somatic variants of low allele fraction.

To see how this works, we first define mix = 𝑚 to be the condition that the variants in the A genome
contain a mixture of 20% allele fraction and 50% allele fraction, with m being the fraction of variants
present at 20% allele fraction. We define 𝐿𝐴,𝑚𝑖𝑥=𝑚:

𝐿𝐴,𝑚𝑖𝑥=𝑚 =
𝑃(𝐹𝑃𝐴|𝑣𝐴,𝑚𝑖𝑥 = 𝑚)
𝑃(𝑇𝑃𝐴|𝑣𝐴,𝑚𝑖𝑥 = 𝑚)

=
𝑃(𝑣𝐴,𝑚𝑖𝑥 = 𝑚|𝐹𝑃𝐴)𝑃(𝐹𝑃𝐴)
𝑃(𝑣𝐴 ,𝑚𝑖𝑥 = 𝑚|𝑇𝑃𝐴)𝑃(𝑇𝑃𝐴)

=
𝑃(𝑣𝐴,𝑚𝑖𝑥 = 𝑚|𝐹𝑃𝐴)

𝑚𝑃(𝑣𝐴,𝑚𝑖𝑥 = 1|𝑇𝑃𝐴) + (1 −𝑚)𝑃(𝑣𝐴,𝑚𝑖𝑥 = 0|𝑇𝑃𝐴)
𝑃(𝐹𝑃𝐴)
𝑃(𝑇𝑃𝐴)

We now assume that 𝑃(𝑣𝐴,𝑚𝑖𝑥 = 𝑚|𝐹𝑃𝐴) = 𝑃(𝑣𝐴,𝑚𝑖𝑥 = 0|𝐹𝑃𝐴) = 𝑃(𝑣𝐴,𝑚𝑖𝑥 = 1|𝐹𝑃𝐴). That is, the score
distribution of false calls does not depend on the mixture fraction 𝑚.

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 97

=
1

𝑚𝑃(𝑣𝐴,𝑚𝑖𝑥 = 1|𝑇𝑃𝐴)
𝑃(𝑣𝐴 ,𝑚𝑖𝑥 = 1|𝐹𝑃𝐴)

𝑃(𝑇𝑃𝐴)
𝑃(𝐹𝑃𝐴) + (1 −𝑚) 𝑃(𝑣𝐴,𝑚𝑖𝑥 = 0|𝑇𝑃𝐴)

𝑃(𝑣𝐴,𝑚𝑖𝑥 = 0|𝐹𝑃𝐴)
𝑃(𝑇𝑃𝐴)
𝑃(𝐹𝑃𝐴)

𝐿𝐴,𝑚𝑖𝑥=𝑚 =
1

𝑚
𝐿𝐴,𝑚𝑖𝑥=1

+ 1 −𝑚
𝐿𝐴,𝑚𝑖𝑥=0

The derivation is easily extended for mixtures of more than two sets of variants with differing allele
fraction.

SomaticScore Characterization
Complete Genomics conducted experiments to characterize the behavior of the calldiff somaticScore for
typical high coverage and standard coverage genomes. Under a variety of conditions, the sensitivity and
specificity were recorded for each somatic score to produce ROC curves. To characterize the high
coverage behavior, genomes sequenced to a depth of 110X gross coverage were used; to characterize the
standard coverage behavior, genomes sequenced to a depth of 55X gross coverage were used. These
numbers correspond to typical gross coverage numbers for Complete Genomics genomes for the high
coverage product and standard coverage product. The Analysis Pipeline version 2.0 results are given in
the plots (Figure 37 through Figure 40) and tables (Table 20 and Table 21).

For each plot, the X-axis consists of the count of somatic discordances observed in a replicate pair. The
Y-axis consists of the count of dbSNP variants discovered in an in-silico mixture of NA19240 reads and
NA12878 reads and not in a pure NA12878 sample, normalized such that a Y-value of 1 is the count of
dbSNP variants discovered in pure NA19240 and not in NA12878 for the case of high coverage with no
score cutoff. For the 50%AF (50% allele fraction) case, the NA19240+NA12878 mixture consisted of
100% NA19240. For the 20%AF case, the NA12940+NA12878 mixture consisted of 40% NA19240 and
60% NA12878.

As illustrated in the characterization plots below, using the --diploid option can slightly improve ROC
for insertions, deletions, and SNPs at 50% allele fraction. However, the default behavior (without the
--diploid option) yields substantially better ROC for SNPs at 20% allele fraction, but makes little
difference for insertions, deletions, and substitutions. Additionally, the benefits of sequencing at higher
coverage depth are apparent as the ROC is substantially better for high coverage than standard coverage,
especially for insertions, deletions, and SNPs at 20% allele fraction.

Figure 36: Legend for All Characterization Plots

50%AF represents scenarios where somatic variant is expected to be
present at 50% allele fraction.

20%AF represents scenarios where somatic variant is expected to be
present at 20% allele fraction.

--diploid represents scenarios where the calibration of varScoreEAF is
used to compute the somaticScore and all germline heterozygous and
somatic variants are assumed to be present at 50% allele fraction.

0.0
0.2
0.4
0.6
0.8
1.0

0 1000 2000 3000 4000 5000

50%AF, --diploid

50%AF

20%AF, --diploid

20%AF

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 98

Figure 37: High and Standard Coverage in-silico Mixture ROC Curve by somaticScore for SNPs

Figure 38: High and Standard Coverage in-silico Mixture ROC Curve by somaticScore for Insertions

Figure 39: High and Standard Coverage in-silico Mixture ROC Curve by somaticScore for Deletions

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

HighCvg, SomaticCategory: snp

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

StdCvg, SomaticCategory: snp

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

HighCvg, SomaticCategory: ins

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

StdCvg, SomaticCategory: ins

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

HighCvg, SomaticCategory: del

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

StdCvg, SomaticCategory: del

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 99

Figure 40: High and Standard Coverage in-silico Mixture ROC Curve by somaticScore for Substitutions

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

HighCvg, SomaticCategory: sub

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Re
la

tiv
e

Se
ns

iti
vi

ty

Replicate Discordances

StdCvg, SomaticCategory: sub

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 100

The data in Table 20 and Table 21 illustrate a key point. To achieve high sensitivity for somatic indel
detection, a lower somaticScore threshold is required than for SNPs. Note that this is due in part because
there is an expectation that fewer true somatic indels will be present. For example, if we expect an equal
number of false somatic insertions as somatic SNPs but ten times as many true somatic SNPs as somatic
insertions, we may expect to require a somatic score threshold on insertions that is 10 dB lower to
achieve the same level of sensitivity. At that threshold, you may expect a higher rate of error for
insertions than SNPs.

Table 20: Sensitivity and Number of Discordant Calls for High Coverage In-Silico Mixture

High Coverage

AF Options
Somatic

Score

snp ins del sub

sens discord sens discord sens discord sens discord

50%AF default -30 0.999 10758 0.953 4427 0.98 3750 0.992 2529

50%AF default -25 0.997 7636 0.925 2141 0.962 2215 0.964 1134
50%AF default -20 0.993 4782 0.867 976 0.925 1059 0.85 410
50%AF default -15 0.978 2281 0.761 402 0.858 345 0.712 106
50%AF default -10 0.956 1017 0.659 163 0.765 79 0.567 39
50%AF default -5 0.919 315 0.255 29 0.679 28 0.432 7
50%AF default 0 0.861 109 0.062 5 0.327 6 0.179 1
50%AF --diploid -30 0.998 5650 0.961 4370 0.988 2740 0.995 3375
50%AF --diploid -25 0.996 3740 0.932 1668 0.976 1760 0.975 1023
50%AF --diploid -20 0.991 2195 0.874 687 0.94 935 0.867 365
50%AF --diploid -15 0.977 1060 0.774 249 0.866 293 0.721 81
50%AF --diploid -10 0.953 428 0.69 86 0.765 68 0.594 32
50%AF --diploid -5 0.915 122 0.377 18 0.683 25 0.456 11
50%AF --diploid 0 0.868 54 0.152 6 0.548 5 0.234 0
20%AF default -30 0.923 10758 0.699 4427 0.711 3750 0.861 2529
20%AF default -25 0.912 7636 0.65 2141 0.667 2215 0.791 1134
20%AF default -20 0.887 4782 0.582 976 0.602 1059 0.654 410
20%AF default -15 0.838 2281 0.492 402 0.522 345 0.523 106
20%AF default -10 0.749 1017 0.298 163 0.448 79 0.353 39
20%AF default -5 0.595 315 0.081 29 0.352 28 0.141 7
20%AF default 0 0.31 109 0.003 5 0.131 6 0.002 1
20%AF --diploid -30 0.859 5650 0.693 4370 0.686 2740 0.869 3375
20%AF --diploid -25 0.808 3740 0.617 1668 0.625 1760 0.797 1023
20%AF --diploid -20 0.68 2195 0.534 687 0.553 935 0.641 365
20%AF --diploid -15 0.454 1060 0.431 249 0.466 293 0.467 81
20%AF --diploid -10 0.274 428 0.319 86 0.383 68 0.251 32
20%AF --diploid -5 0.148 122 0.103 18 0.293 25 0.071 11
20%AF --diploid 0 0.067 54 0.021 6 0.138 5 0.004 0

Appendix calldiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 101

Table 21: Sensitivity and Number of Discordant Calls for Standard Coverage In-Silico Mixture

Standard Coverage

AF Options
Somatic

Score
snp ins del sub

sens discord sens discord sens discord sens discord
50%AF default -30 0.979 13933 0.757 5095 0.822 4187 0.918 2649
50%AF default -25 0.975 9165 0.741 2247 0.804 2090 0.896 1051
50%AF default -20 0.964 5298 0.703 1036 0.77 900 0.74 339
50%AF default -15 0.94 2597 0.626 445 0.706 311 0.573 79
50%AF default -10 0.899 1063 0.537 181 0.628 90 0.458 35
50%AF default -5 0.842 324 0.176 42 0.489 29 0.328 12
50%AF default 0 0.745 110 0.072 7 0.112 3 0.16 3
50%AF --diploid -30 0.979 8166 0.765 4475 0.831 2765 0.924 3817
50%AF --diploid -25 0.975 4842 0.75 1792 0.821 1795 0.904 971
50%AF --diploid -20 0.963 2666 0.717 798 0.792 929 0.778 314
50%AF --diploid -15 0.939 1300 0.64 298 0.725 323 0.592 67
50%AF --diploid -10 0.898 472 0.567 100 0.64 87 0.483 29
50%AF --diploid -5 0.845 163 0.296 10 0.555 30 0.358 8
50%AF --diploid 0 0.761 63 0.13 3 0.391 4 0.213 3
20%AF default -30 0.809 13933 0.504 5095 0.558 4187 0.734 2649
20%AF default -25 0.786 9165 0.458 2247 0.515 2090 0.648 1051
20%AF default -20 0.742 5298 0.395 1036 0.449 900 0.478 339
20%AF default -15 0.671 2597 0.322 445 0.364 311 0.345 79
20%AF default -10 0.558 1063 0.197 181 0.281 90 0.224 35
20%AF default -5 0.402 324 0.064 42 0.174 29 0.093 12
20%AF default 0 0.215 110 0.016 7 0.038 6
20%AF --diploid -30 0.727 8166 0.501 4475 0.527 2765 0.75 3817
20%AF --diploid -25 0.666 4842 0.442 1792 0.485 1795 0.653 971
20%AF --diploid -20 0.564 2666 0.377 798 0.414 929 0.47 314
20%AF --diploid -15 0.435 1300 0.303 298 0.328 323 0.322 67
20%AF --diploid -10 0.33 472 0.23 100 0.241 87 0.188 29
20%AF --diploid -5 0.226 163 0.081 10 0.154 30 0.081 8
20%AF --diploid 0 0.136 63 0.025 3 0.047 4 0.016 3

Appendix listvariants Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 102

listvariants Algorithm
The superlocus approach to genome comparison achieves a good combination of sensitivity to genomic
variation and insensitivity to canonical alignment for a small number of genomes. But as the number and
variety of genomes grows, superloci can grow arbitrarily large. As shown in “calldiff,” when superloci
grow too large, the literal interpretation of sequence compatibility employed by calldiff tends to be
insensitive to real genomic differences.

Both listvariants and testvariants can be used for many-genome comparison. The listvariants command
lists all the small variants found in an arbitrary number of genomes, and the testvariants command tests
each variant to determine its presence in each of the input genomes.

The listvariants command merges and lists all the fully called mutations from a set of variant files (that is,
each line from each variant file that is fully called and inconsistent with the reference). listvariants is as
specific as it can be about mutations without splitting up called mutations from the variant file. For
example:

Reference: CGAATTACAT

Allele 1: CGCATTATAT

Allele 2: CGAATTACAT

In this case, suppose the variant file listed this sequence as two SNP mutations with the same hapLink to
indicate they are on the same haplotype. In this case, listvariants also lists the two SNPs separately. In
this way, the many-genome comparison can be very specific about where genomes differ, although it
loses information about which variants occurred on the same haplotype as other variants.

listvariants also canonicalizes any input variants it encounters before writing them to the output. It uses
the leftmost variant that is equivalent to the input variant. For example:

Reference: CG-AAAAA-CAT

Alternative 1: CGAAAAAA-CAT

Alternative 2: CG-AAAAAACAT

The two alternatives above have the same sequence, but have different alignments against the genome. If
the input genomes list both insertions, the alternative 2 alignment is canonicalized (transformed) into the
alternative 1 alignment because it is the leftmost alignment that describes an equivalent sequence. The
two variants are then merged as equivalent, and a single output record is produced.

testvariants Algorithm
The testvariants command processes the variants listed by listvariants and writes each input record to
the output, with a flag for each allele of each genome to indicate if the variant is present on that allele as
listed in Table 12.

The testvariants command tests each variant against each genome independently. To do so, it first
constructs a one-genome superlocus to keep track of which loci may be used in the comparison. The
superlocus is constructed using the same superlocus rules as calldiff, except the “Fixed count of distinct
3-mers” used is 6 instead of 4.

After a superlocus has been found, all possible phasings consistent with the hapLink values in the calls
are used to produce hypotheses about what the genome sequence is. testvariants chooses the phasing
that results in the most 1’s, then the most 0’s.

To test a particular phasing, for each allele, testvariants first finds a base set of calls consisting of the
minimal set of calls overlapping the variant, extended to the left and right according to the prefix/suffix
matching rule of calldiff. Then testvariants compares the call sequence to the variant sequence (extended
to the left and right by reference sequence), for every sequential sequence of calls in the superlocus that
covers the base set of calls. This results in “1” if any compared sequence matches the variant sequence, or

Appendix junctiondiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 103

“N” if any compared sequence is compatible with the variant sequence but contains no-calls. Otherwise,
the result is “0”.

Although the testvariants algorithm may achieve a reasonable middle ground between sensitivity to real
genomic variation and insensitivity to canonical alignment for the many-genome comparison problem,
the following limitations apply:

 testvariants is more sensitive to the canonical alignment than calldiff. As such, it is not the ideal tool
for comparing a small number of genomes (such as 2 or 3).

 For simplicity of output file format and interpretation, testvariants does not transfer the score of the
variant calls or the reference scores in the input genomes to the output file. Not having scores further
limits the testvariants output for use in analyzing the genomic differences of a small number of
genomes.

junctiondiff Algorithm
The junctiondiff tool finds junctions present in one genome (genome A) but not another (genome B). It
addresses the following pitfalls when comparing the set of junctions present in two genomes:

 Junction coordinates are not always exact.
When a junction’s sequence cannot be resolved (indicated when the value in the
JunctionSequenceResolved column of the junction file is “N”), the coordinates of the junction are
estimations based on the expected distribution of mate gaps of the DNB reads that contribute to the
discordant mate pair analysis. To resolve this issue, junctiondiff considers all junction coordinates
within N bases to be equivalent. Here, N is controlled by the command-line option --distance.

 Junction coordinates for the same junction are not always the same.
Just as for short indels, the same junction sequence can sometimes be described at slightly different
coordinates. Additionally, small variants near the junction may cause the junction coordinates to shift
slightly. This pitfall is also resolved by the --distance command-line option.

 Complete Genomics junction detection algorithm has low sensitivity to very short deletions.
Slight differences in mate gap distribution or slight changes in coverage bias characteristics for the
two genomes may mean that a junction that is present with good support in genome A is not called in
genome B due to lack of support. To resolve this issue, junctiondiff provides the option
--minlength to filter out junctions consistent with short deletions.

 There is low sensitivity for junctions with few discordant mate pair alignments.
Complete Genomics junction caller requires three discordant mate pair alignments of support to call
a junction. If a junction has a low expected count of discordant mate pair alignments (such as 3),
whether the junction achieves sufficient support is a matter of chance. To address this issue,
junctiondiff provides the option --scoreThresholdA to filter out junctions with few discordant
mate pair alignments.

 Genome sample B may be contaminated by genome sample A.
This often occurs, for example, if genome sample B is a tumor and genome sample A is the matched
normal. For this reason, the junctiondiff tool allows you to specify a cutoff of support using the
--scoreThresholdB option for genome B.

Appendix junctiondiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 104

Representation of the Complete Genomics Data in SAM Output Format
The detailed descriptions of the SAM output in Table 22 and Table 23 and assume some familiarity with
Complete Genomics data and terminology. We recommend you consult the Complete Genomics Data File
Formats document, Complete Genomics Introduction to Complete Genomics’ Sequencing Technology, and
the Drmanac et al. Science paper if you are mostly familiar with other Next-Gen platforms.

The description of the SAM format shown here is based on the SAM Format Specification.

Table 22: SAM Header Fields

Section Tag Value Description Example
@HD VN 0.1.4 Version of SAM spec
 SO “DnbId sorted” Sort Order.

Note: A DNB is a clone.

@SQ SN ChromosomeName Sequence Name. Included for all
chromosomes in the reference
genome.

SN:chr1

 LN ChromosomeLength Length of the chromosome. Included
for all chromosomes in the reference
genome.

LN:247249719

 UR ReferenceFilePath Path to the input reference file UR: reference.crr

 AS ASM ID Reference sequence ID AS: GRCh37

@RG ID LaneID Slide and Lane ID ID:GS08081-FS3-L02

 SM SampleID Sample ID SM:GS00028-DNA-C01

 LB LibraryID Library ID of the library LB:GS00433-CLS

 PU LaneID Slide and lane ID PU:GS08081-FS3-L02

 CN "Complete Genomics" Name of sequencing center producing
the read

 DT ExportDate Complete Genomics data analysis
timestamp stored in the reads file

DT:2010-01-21

 PL "Complete Genomics" Platform/technology used to produce
the read

@PG ID "cgatools" Program name
 VN Version Program version VN:0.5.0

 CL Command line Command line Complete string

Appendix junctiondiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 105

Table 23: Mapping Record Fields

Field Value SAM Definition evidence2sam Usage
QNAME SlideID-LaneID-Chunk:

DnbOffset
Query Name The QNAME value is constructed from the full

lane Id (SlideId+LaneId), chunk number and 0-
based DNB offset from the beginning of the Reads
file provided as input. For example: GS08081-
FS3-L02-3:244

FLAG 0x0001 The read is paired in
sequencing.

The flag is always set for Complete Genomics
data. The current Complete Genomics technology
always produces paired reads.

 0x0002 Each fragment properly
aligned according to the
aligner

The flag is set to 1 if both mates are mapped.

 0x0004 The query sequence
itself is unmapped.

The flag is set when there are absolutely no
mappings found for this HalfDNB.

 0x0008 The mate is unmapped. The flag is set only when there are no mappings
found for this HalfDNB’s mate.

 0x0010 Strand of the query 0 for forward; 1 for reverse strand.
 0x0020 Strand of the mate 0 for forward; 1 for reverse strand.
 0x0040 The read is the first read

in a pair.
The flag is set if the current HalfDNB is from the
5’ end of the original cloned insert.

 0x0080 The read is the second
read in a pair.

The flag is set if the current HalfDNB is from the
3’ end of the original cloned insert.

 0x0100 The alignment is not
primary.

The flag is set if there is a better mapping of the
same HalfDNB having higher value of MAPQ (see
MAPQ in this table).

 0x0200 The read fails
platform/vendor quality
checks.

Always set to 0.

 0x0400 The read is either a PCR
duplicate or an optical
duplicate.

Always set to 0.

RNAME ChromosomeID
or "*"

Reference sequence
NAME

Can be "*" if this HalfDNB doesn't have mappings.
If the HalfDNB is not mapped itself but has a
mapped mate the RNAME of the mate is reported.

POS Current Mapping
Position or 0

1-based leftmost
POSition/coordinate of
the clipped sequence

The position reported in a Mappings file record
from a Complete Genomics export package offset
by 1 (Complete Genomics export format reports
mapping positions as 0-based). 0 is reported if
there are no mappings found for this HalfDNB
and there are not mapped mates. If the HalfDNB
is not mapped itself but has a mapped mate the
POS of the mate is reported.

MAPQ CG_Mapping weight MAPping Quality (Phred-
scaled probability that
the mapping position of
this read is incorrect.)

The probabilities are reported in different ranges
for consistent pair reads (Flag 0x0002, case 1)
and for non-paired mappings. Complete
Genomics does not recommended that values of
consistent and inconsistent mappings be directly
compared.

Appendix junctiondiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 106

Field Value SAM Definition evidence2sam Usage
CIGAR CigarString and

GS/GQ/GC flags
Extended CIGAR string Currently, Complete Genomics initial mappings

files do not allow insertions or deletions.
Therefore, only M and N operations are used in
the CIGAR field. The negative gaps are
represented using GS/GQ/GC flags. The CIGAR
sequence will represent the positive gaps using N
and ignore the negative gaps.

MRNM "=" or ChromosomeID
or "*"

Mate Reference
sequence NaMe; "=" if
the same as RNAME

Reports "*" if there is no consistent mate found.

MPOS MatePosition
or 0

1-based leftmost mate
POSition of the clipped
sequence

Reports 0 if there is no consistent mate found.

ISIZE DistanceToMate
or 0

Inferred Insert SIZE The distance between the consistent mate start
position and the start position of the current
HalfDNB mapping. The value is 0 if the mates are
mapped to different chromosomes.

SEQ Sequence Query SEQuence;
"=" for a match to the
reference;
n/N/. for ambiguity

The regions of overlapping bases in the negative
gaps contain the bases with higher scores.

QUAL QualityScores Query QUALity; ASCII-33
gives the Phred base
quality

The values are copied from the corresponding
record of the Complete Genomics reads file.

TAG GS/GQ/GC
RG
R2/Q2
XS

Tags GS/GQ/GC flags are used to represent
Complete Genomics-specific negative wobble
gaps in HalfDNBs.

 RG: a standard tag containing the read group
name.

 R2, Q2: optional, standard tags.
 XS:I:1 the optional user-defined tag marks an

SV candidate.
See SAM Format Specification in “References” for
the description of the flags.

Rules to Set the "not primary" Flag (0x0100)
The flag “not primary” is set for a HalfDNB mapping in the following cases:

 The mapping of a HalfDNB doesn't have a consistent mate pair mapping, and there are consistently
mapped pairs found for the DNB.

 There is another mapping of the same HalfDNB having a higher MAPQ value.

Combining Mapping Records in SAM
1. The best mapping pair (the best score) of a DNB is reported with the "non-primary" flag set to 0. Both

mappings should refer to each other as the best mates.

2. All the other mappings of that DNB have the "non-primary" flag set to 1.

3. If both HalfDNBs are mapped uniquely but not consistently, they might be reported as primary
(“non-primary” flag is set to 0) if “mate-sv-candidates” option is used.

4. If only one HalfDNB is mapped, the best mapping of that HalfDNB is reported followed by a "non-
mapped" mapping record of the other HalfDNB. The alignment position of the other HalfDNB is set to
the same values as the mapped HalfDNB and the “non-primary” flag of the records is set to 0. The not
mapped record will be marked as “not mapped” by appropriate flags. If the options “add-unmapped-

Appendix junctiondiff Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 107

mate-info” or “add-mate-sequence” are used the SAM record for the non-mapped mate is not
generated.

5. All the other mappings of the mapped read from number 4 above are reported one record per
mapping having “non-primary” flag set to 1.

All the not mapped reads are reported in pairs aligned to the 0 position. The alignment position is
important to keep the records together while sorting and merging BAM files. If the options “add-
unmapped-mate-info” or “add-mate-sequence” are used only a record for the first unmapped mate is
generated to reduce the output size.

Limitations of SAM Format Conversion
 SAM does not have strong support for overlapping sub-reads that are present in Complete Genomics

data. An example of an overlapping sub-read is the negatively sized intra-read gaps. To represent
overlapping reads, the strongest base call is put in the SAM mapping record, and the alternative base
calls are represented using the GS/GQ/GC tags of the mapping record.

 The NM tag (edit distance to reference sequence) is not currently produced by evidence2sam.
 The R2 and Q2 tags (mate sequence and quality scores) can be generated optionally.

Rules for Converting Evidence DNBs with Multiple Mappings to SAM Format
There are two situations where a DNB may have multiple mapping records present in the evidence DNB
mappings provided by Complete Genomics. First, if the best hypothesis is heterozygous and contains two
non-reference alleles, support is also given for the reference allele. In this case, if a DNB supports two of
the three alleles equally well (or similarly well) and not the third allele, then the evidence DNB mappings
contain a record showing alignment of the DNB to each of the two alleles it supports. Second, if there are
two regions of the genome with similar sequence such that a DNB aligns equally well to either sequence,
the DNB may be used as evidence for alleles in both regions. A post-processing step of the Complete
Genomics assembly process finds such regions and no-calls them.

Because most tools that visualize SAM do not have rich features to specify an allele a DNB maps against,
visualization of the duplicate mapping records present in the evidence can be confusing. For this reason,
the evidence2sam tool removes duplicate DNB mappings that are nearby on the reference by default.
When the option –keep-duplicates is used, evidence2sam reports all mappings as non-primary
mappings.

The evidence2sam tool de-duplicates using the following algorithm, for each variation interval:

1. Update the read-ahead buffer to ensure it contains all evidence mapping records up to 1 kb to the
right of the position of the rightmost evidence mapping record for this interval.

2. Moving from position 0 to the end of the chromosome, processing each mapping record of the
current variation interval as follows:

a. Collect all the mappings of the same DNB that belong to the current interval or mappings from
different intervals that overlap the corresponding arm/both arms of the selected DNB.

b. Run one-DNB de-duplication. This operation deletes all the collected DNB mappings from the
buffer except the “best” one.

c. Write the “best” mapping into the SAM output stream.

d. Remove the “best” mapping from the buffer and proceed to the next mapping in the current
interval.

e. If the last mapping in the current interval has been processed, remove the mappings processed
for the current interval from the read-ahead buffer.

Appendix junctions2events Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 108

During de-duplication, the following rules are used to determine the best mapping for a DNB:

1. If several mapping records belong to the same variation interval, leave only the record that has
maximum mapping quality.

2. If several mapping records belong to adjacent variation intervals (same side and strand), leave only
the record that has maximum mapping quality.

3. If there are only two mapping records in the set and their different arms support different intervals,
construct a composite mapping inheriting MAPQ, position in the reference, and reference alignment
from a corresponding mapping record.

4. If there is still more than one mapping record in the input set, select the mapping with highest MAPQ
and remove the other mappings.

junctions2events Algorithm
To understand the utility of junctions2events, consider a distal duplication event within the same
chromosome as shown in Figure 41. This distal duplication event generates two junctions detected with
mate pair 1 and mate pair 2.

Figure 41: Distal Duplication Event

In this example, the genomic region represented by the second orange segment of the sequenced genome
is duplicated and inserted into a region upstream of the original copy. Mate pair 1 from the sequenced
genome maps to the reference genome in the expected orientation, but at a distance that is greater than
the expected mate gap size. Thus, Junction A represented by mate pair 1 would have both LeftStrand and
RightStrand as “+” in the junction file. Mate pair 2 from the sequenced genome maps to the reference
genome in an anomalous orientation: the right end maps to an earlier position in the reference genome
than the left end. Thus, Junction B represented by mate pair 2 would have both strand columns as “-”.

When interpreted in isolation, Junction B has the signature of a tandem duplication of the green and
orange sequence. Junction A indicates a deletion of the green sequence. Both junctions seem to indicate
more disruptive events than the duplication that caused them, particularly if the green sequence is long
and contains many genes and the orange sequence is very short. Junction-by-junction interpretation
becomes even more misleading if the duplicated orange sequence is inserted into a different
chromosome such that each junction may seem to indicate a rearrangement of chromosomal arms.

Missing the detection of a true junction and detecting false junctions can lead to misinterpretation of the
underlying event. To limit the chances of misinterpreting the events, junctions2events requires access to

Appendix junctions2events Algorithm

© Complete Genomics, Inc. CGA Tools User Guide — 109

the most complete list of junctions available. However, you can specify the shorter list of junctions of
interest, so an event will be listed only if it contains at least such junction.

One can deduce structural variation event types from junction data by generating an undirected graph of
related junctions and then stepping through the following heuristic process:

 Junctions that are close on at least one side are considered connected. The distance threshold is
controlled by the junctions2events max-related-junction-distance parameter.

 Connected components with more than two junctions are considered “complex” events.
 For every other junction, junction2events attempts to find a compatible junction in such a way that

together they may be interpreted as a distal duplication of contiguous sequence. For example, for
junction B in Figure 41, junction2events starts the search from the right position of the junction
upstream, until it encounters the right position of the junction A. In general, it scans in the direction
away from the break indicated by the junction side. The maximum scan distance is controlled by the
max-pairing-distance parameter.
Junctions are considered compatible when their sides can be paired to bound a contiguous piece of
sequence from the inside, similar to the orange sequence in Figure 41, while their remaining sides
bound a small piece of sequence from the outside.

 Pairs of compatible junctions are considered “inversion” events when the junctions change strand,
and the sequence chunk bounded from the inside overlaps to a large degree with the sequence chunk
bounded from the outside (one can think of this as the sequence being copied, inverted, and pasted
over its old location). For the cases with no significant overlap, the event is classified as “distal-
duplication”.

 Junction pairs that are connected, but not compatible in the sense described above, are considered
“complex” events.

 For isolated junctions, junction2events attempts to find a nearby mobile element that may have
caused the junction by copying the adjacent sequence. The search distance is controlled by the
max-distance-to-m-e parameter, and the list of mobile elements that are known to copy an
adjacent sequence may be specified using the mobile-element-names parameter.

 Remaining isolated junctions that connect sequence on different chromosomes are not classified any
further and are listed as “interchromosomal” events.

 Finally, the isolated junctions that have both sides on the same chromosome are interpreted based
on the strands of the junction sides: Junctions with +/+ sides are classified as deletions, -/- as tandem
duplications, and strand-inconsistent junctions as probable inversions. In all cases the subject
sequence of the event lies between the junction side positions.

In addition to classifying the events by the type, junctions2events uses the list of known genes to
annotate the events. Every event (including the “complex” events) is annotated with the list of all
potentially disrupted genes; these are the genes that overlap at least one of the junction side positions for
any of the junctions that were grouped into the event.

junctions2events generates the list of possible gene fusions for an event as follows:

 When a junction appears to connect two different genes (for example, A and B), it is considered a
possible gene fusion (described in the file as “A/B”).

 When a junction connects the region upstream of gene C to an intact gene D in a strand-consistent
manner, it is annotated using “TSS-UPSTREAM[C]/D” notation; the size of the upstream region that
triggers this annotation is set using the regulatory-region-length parameter.

 For the events that may indicate a copy number change of a stretch of sequence (that is, “deletion”,
“tandem-duplication”, and “distal-duplication” events), all the genes that are completely contained in
the affected sequence are included.

junctions2events produces two files:

Appendix mkvcf Translation Details

© Complete Genomics, Inc. CGA Tools User Guide — 110

 The list of the original junctions of interest annotated with the event type, the list of related junctions,
and the unique ID of the event.

 List of the events and the corresponding gene-related annotations.
junctions2events requires two external data files.

 List of repeat annotations, described in “generatemasterVar (beta)”.
 List of the known gene locations in the genome, derived from the NCBI RefSeq alignment data and

reformatted to better fit the CGA Tools conventions.
You can download these files for each of the reference builds supported by Complete Genomics from
ftp://ftp.completegenomics.com/AnnotationFiles/.

Sequence Coordinate System
Sequence positions in the mapping and variations files are represented in half-open, zero-based
coordinates, which denote locations between successive reference base positions. A substitution or
deletion of the second base (T) in the sequence of length 8 below would have a start position of 1 and an
end position of 2. An insertion following the same second base would have both a start and end position
of 2.

0 1 2 3 4 5 6 7 8
| A | T | A | G | G | C | T | A |

For example, the gene LIPI is located at chr21:15481137-15579254 using these coordinates.

mkvcf Translation Details
In most cases, fields in the VCF correspond exactly 1:1 to values taken from the input files. However, in
some cases there are new fields derived from one or more values in the input files and there are also
various reformattings. The definitions of individual fields are covered in the section on field names,
above. More general observations are provided here.

masterVar Conversion
The converter aims to convert the masterVar file content to VCF by doing straightforward, 1:1 mapping
as much as possible, given that the VCF is a multi-genome format where sometimes multiple loci must be
merged to construct a single VCF locus. Here are some highlights of the approach to translation used in
mkvcf:

 Generally, the masterVar separates multiple records within a column using a semicolon “;” and
multiple parts of a record using a colon “:”. These characters are generally used as separators for
other reasons in VCF; the comma “,” is commonly used to separate per-allele information in VCF. So
where a “;” occurs in the masterVar, you will see an ampersand “&” in the VCF; where a “:” occurs in
the masterVar you will see a vertical bar “|” in the VCF.

 Any annotations that result in a period “.” meaning no information, or a list of periods, one per allele,
may be omitted from the output for compactness.

 The annotations generally only include the masterVar annotations for calls that are completely
subsumed by the VCF locus. If a masterVar locus only partially overlaps the VCF record (only
possible for ref-called loci and no-called loci), the annotations are not transferred to the VCF.

 The per-allele, per-genome annotations of the FORMAT fields are always lists with two values. In
haploid regions, the second value is always period “.”. This is required by the HQ field according to
VCF 4.1 specifications. This general convention has been followed for other fields for consistency.

 Some of the annotation columns of the masterVar have to do with CNV information, and because
that information is already represented by distinct records in the VCF, the information is not
repeated for each small variant record.

ftp://ftp.completegenomics.com/AnnotationFiles/�

Appendix calldiff AlgorithmU

© Complete Genomics, Inc. CGA Tools User Guide — 111

 Non-standard sub-fields are given names with a “CGA_” prefix, so as not to collide with future
standard sub-field names or other non-standard sub-field names.

Locus Definition (How We Split the Reference Genome into Records)
The genome is split into records as follows:

 Gather a superlocus, using 0 bases of extension and 0 3-mers of extension, and additionally skipping
the prefix matching and suffix matching capabilities of the algorithm that defines superloci. Also
collect superloci that contain no-calls but no ref-inconsistent calls. More information about superloci
can be found in “calldiff Algorithm”.

 Split the superlocus up by ref-inconsistent calls of all included genomes. Overlapping ref-inconsistent
calls are merged into a single VCF record. The range of any insertion, deletion, or length-changing
block substitution call is extended by one base, as required by VCF. We always extend the locus one
base to the left, except at the beginning of the chromosome where we extend any insertion or
deletion one base to the right.

 Within the superlocus, gaps between the ranges defined above are no-calls. If the
--include-no-calls option is on, add VCF records for these ranges as well.

Handling of Long No-Calls
If the --include-no-calls option is on, loci containing only no-calls are present in the output. Some
very long regions of the genome are no-called, and to fit this information into VCF would normally
require outputting very long strings in the REF field. As a workaround for such loci, we only output the
first base of the locus in the <REF> field, we add the END tag in the <INFO> field, we output
<CGA_NOCALL> for the <ALT> field, and the GT sub-field for each no-called allele is period “.”.

Phasing of Merged Loci
Based on the Locus Definition, some loci from the input var file may need to be merged into a single
output record. When this happens, it is possible that two loci that are not explicitly phased by hapLink
information in the var file must be merged, in which case we must choose a phasing. To do this, the code
first orders the genomes in ascending order by the number of possible phasings for the genome that are
consistent with the hapLinks. A phasing is chosen for each genome in that order. In this way, genomes
whose phasing is well-defined and have no ambiguity are picked first. When an ambiguity is discovered,
the phasing for that genome is chosen according to the following rules:

• Prefer phasings with more fully called alleles. For example, pick a phasing that results in a fully
called allele and a no-called allele, rather than two alleles with no-calls.

• If two phasings result in the same number of fully called haplotypes, pick the phasing that results
in the fewest number of fully called haplotypes within the population. For example, if the first
genome has alleles ACCCCCT and TCCCCCCG, then for the second genome we prefer ACCCCCT
and TCCCCCCG rather than two new alleles ACCCCCG and TCCCCCCT.

Computation of Calibrated Scores (CGA_CEHQ)
These qualities are derived by looking up the calibrated score using the varScoreEAF and totalReadCount
of this locus in the Complete Genomics calibration. The false positive, undercall, and overcall calibrations
are used. For more information, see Complete Genomics Small Variant Score Calibration Methods.

Appendix calldiff AlgorithmU

© Complete Genomics, Inc. CGA Tools User Guide — 112

CNV Conversion
CNV records are mostly 1:1 transfers of values from the input CNV files, but there are several issues
worth highlighting:

 The input files use ‘N’ to indicate various forms of missing or no-called data; these values are
translated to period “.” in the VCF file. This is also used in multi-sample VCFs of mixed gender, where
coverage is no-called in regions of sex chromosomes absent from the given genome.

 While CNV data are reported in 2 kb windows, source non-diploid data are based on 100 kb
windows. mkvcf translates this information by copying the information from a 100 kb window into
every 2 kb window it contains. Due to the way the window boundaries are determined, a 2 kb
window never spans the boundaries of two 100 kb windows.

 CNV records in the output represent the analysis windows rather than final CNV segments. This
makes it easy to compare multiple genomes within a given window, but it requires that multiple
rows be considered to identify the boundaries of a called segment.

MEI Conversion
MEI records are mostly 1:1 transfers of values from the input MEI files. However, the input files use “N”
to indicate various forms of missing or no-called data; these values are translated to period “.” in the VCF
file.

SV Conversion
The “Specifying Complex Rearrangements with Breakends” section of the VCF 4.1 specifications describes
the representation of complex structural variations as:

An arbitrary rearrangement event can be summarized as a set of novel adjacencies. Each
adjacency ties together 2 breakends. The two breakends at either end of a novel adjacency
are called mates.

The specifications for structural variants in output from mkvcf follows the definitions and basic logic
introduced in VCF 4.1. The concept of “junctions” in Complete Genomics data is translated to the concept
of “adjacency” in the VCF format. Each adjacency ties together 2 breakends. The two breakends at either
end of a novel adjacency are called mates. By extension, the left and right sections of a junction are
analogous to mates:

 Adjacency: Analogous to Complete Genomics term “junction”
 Breakend: Analogous to Complete Genomics term ‘”LeftPosition” or “RightPosition”
 Mate: Analogous to Complete Genomics term “LeftSection” or “RightSection”
Hence, an individual SV record in the output corresponds to one side of a junction in the input file(s).
Pairing of an individual record to that corresponding to the other end of the junction is also provided via
MATEID tag. In the case of a single genome each junction results in two SV records, one per each junction
side. In the case of two-genomes comparison, the clusters of compatible junctions (i.e. those located
within the distance threshold from each other: see the --junction-distance-tolerance option)
from different genomes are represented by one junction from each cluster.

	CGA™ Tools User Guide
	Table of Contents
	Preface
	Conventions
	Complete Genomics Data and Data Structure Requirements
	Data Structure Requirements

	CGA Tools Documents
	References

	Installing CGA™ Tools
	Overview and Requirements
	Install Processes in a Nutshell
	Install CGA Tools from a Binary Distribution
	Install CGA Tools within a Galaxy Environment
	Building CGA Tools from Source Code

	User Requirements
	System Requirements
	Software Requirements to Build CGA Tools from Source Code

	Installing CGA Tools from a Binary Distribution
	Mac OS X: Installing CGA Tools from a Binary Distribution
	Linux: Installing CGA Tools from a Binary Distribution

	Installing CGA Tools in Galaxy
	Installing CGA Tools from Source Code
	Preparing the Environment
	Installing CMake
	Installing Boost
	Downloading and Recompiling the CGA Tools Source Code

	Obtaining a Reference Human Genome for Use with CGA Tools
	Downloading the CRR File
	Building the CRR File from FASTA Files
	Verifying CRR File Content

	Obtaining Ancillary Files for Use with CGA Tools

	Genome Comparison Tools
	The Problem of Genome Comparison
	Problems Not Solved by Variant File Format
	Genome Comparison with CGA Tools
	snpdiff
	Synopsis
	Description
	Analysis Pipeline Version Effects

	Command Line Options
	Input Files
	Output File Format: Standard and Verbose Reports
	Output File Format: Stats Report
	Example

	calldiff
	Synopsis
	Description
	Analysis Pipeline Version Effects
	Data Structure Requirement

	Command Line Options
	Input Files
	Output Files
	SuperlocusOutput
	SuperlocusStats
	LocusOutput
	LocusStats
	SomaticOutput

	Examples
	Gene LIPI and Variation
	High-confidence Somatic Variants

	listvariants (beta)
	Synopsis
	Description
	Analysis Pipeline Version Effects

	Command Line Options
	Input Files
	Output Files
	Examples
	List Multiple Genomes on the Command Line
	List Multiple Genomes in a Text File

	testvariants (beta)
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Examples

	junctiondiff (beta)
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Examples
	Basic junctiondiff Operation
	junctiondiff Applied Iteratively to Multiple Genomes

	SAM Conversion Tools
	evidence2sam (beta)
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Examples

	VCF Conversion Tool
	mkvcf (beta)
	Synopsis
	Description
	Analysis Pipeline Version Effects
	Data Structure Requirement

	Command Line Options
	Input Files
	Output Files
	Examples
	Produce a single genome VCF, including small variants, CNVs, SVs, and MEIs
	Produce a two-genome VCF including small variants, CNVs, and SVs
	Produce a four-genome VCF including small variants and CNV

	Field Tags

	Master Variation File Format Conversion Tool
	generatemasterVar (beta)
	Synopsis
	Description
	Analysis Pipeline Version Effects
	Data Structure Requirement

	Command Line Options
	Input Files
	Output Files
	Example

	Filtering and Annotation Tools
	varfilter (beta)
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Example

	join (beta)
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Example
	Annotate a Variant File
	Annotate calldiff Output with Gene Information

	junctions2events (beta)
	Synopsis
	Description
	Analysis Pipeline Version Effects

	Command Line Options
	Input Files
	Output Files
	Annotated Junctions
	Events

	Example

	Reference Tools
	CRR File Format
	FASTA Reference Sequences
	fasta2ccr
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Example

	crr2fasta
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Example

	decodecrr
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Example

	listcrr
	Synopsis
	Description
	Command Line Options
	Input Files
	Output Files
	Example

	Appendix
	snpdiff Algorithm
	calldiff Algorithm
	calldiff for Scoring Somatic Variations (beta)
	Computing the Somatic Likelihood Ratio
	By independence assumption we have:
	Calldiff Diploid Option
	SomaticScore Characterization

	listvariants Algorithm
	testvariants Algorithm
	junctiondiff Algorithm
	Representation of the Complete Genomics Data in SAM Output Format
	Rules to Set the "not primary" Flag (0x0100)
	Combining Mapping Records in SAM
	Limitations of SAM Format Conversion
	Rules for Converting Evidence DNBs with Multiple Mappings to SAM Format

	junctions2events Algorithm
	Sequence Coordinate System
	mkvcf Translation Details
	masterVar Conversion
	Locus Definition (How We Split the Reference Genome into Records)
	Handling of Long No-Calls
	Phasing of Merged Loci
	Computation of Calibrated Scores (CGA_CEHQ)

	CNV Conversion
	MEI Conversion
	SV Conversion

